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Abstract. We define the class of two-player zero-sum games with payoffs having mild

discontinuities, which in applications typically stem from how ties are resolved. For games

in this class we establish sufficient conditions for existence of a value of the game, maximin

and minimax strategies for the players, and a Nash equilibrium. We prove first that if all

discontinuities favor one player then a value exists and that player has a maximin strategy.

Then we establish that a general property called payoff approachability implies that the

value results from an equilibrium. We prove further that this property implies that every

modification of the discontinuities yields the same value; in particular, every modification

has epsilon-equilibria.

We apply these results to models of elections in which two candidates propose policies

and a candidate wins election if a weighted majority of voters prefer his policy. We provide

tie-breaking rules and assumptions about voters’ preferences sufficient to imply payoff ap-

proachability, hence existence of equilibria, and each other tie-breaking rule yields the same

value and has epsilon-equilibria. The assumptions are satisfied by generic preferences if the

dimension of the space of policies is as large as the number of voters. For games with large

electorates, payoff approachability can be verified directly, with no restriction on the dimen-

sionality of the space of policies. These conclusions are then applied to the special case of

Colonel Blotto games in which each candidate allocates his available resources among sev-

eral constituencies and the assumption on voters’ preferences is that a candidate gets votes

from those constituencies allocated more resources than his opponent offers. Moreover, for

simple-majority rule we prove existence of an equilibrium that has zero probability of a tie.

1. Introduction

Following Downs [9], studies of elections often use models in which two candidates compete

for votes via the policies they propose. Each candidate’s sole objective is to obtain a majority

of votes, where each voter will cast her vote for the candidate whose policy she prefers.

Because only one candidate can win a majority of votes, such models induce zero-sum games

between the candidates. However, because outcomes depend on how voters resolve ties

between candidates’ policies, the candidates’ payoffs are discontinuous functions of their
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policies. A major hindrance to studies of such models has been a lack of sufficient conditions

for existence of a value of the game, and existence of maximin/minimax or equilibrium

strategies for the candidates.1 Here we establish such conditions for a large class of games,

and then apply them to models in which a candidate must win a weighted or simple majority

of votes to win election.

Section 2 defines the class of two-player zero-sum games with payoffs with mild discon-

tinuities, as specified by Assumption 2.1, and establishes two general existence theorems.2

Section 3 and 4 apply these theorems to voting games in which the winner is determined

by majority rule. These games typically have mild discontinuities at strategy profiles where

voters indifferent between the policies proposed by the candidates are pivotal in determining

the outcome of the election.3

Throughout we say that a strategy is optimal for player 1 if it is a maximin strategy, or for

player 2 if it is a minimax strategy. The general results in Section 2 consider two cases. First

we show that if discontinuities invariably favor one player then a value exists and that player

has an optimal strategy. This case arises in applications when one candidate wins all ties

among voters; or in a legislative context, when the status quo is the default outcome in the

event of a tie. Next we identify a general property called payoff approachability.4 We show

that this property implies the condition called ‘better-reply security’ by Reny [23], which

then implies that the players have equilibrium strategies that yield the value. Moreover,

we show that in games satisfying payoff approachability this remains the value for every

modification of payoffs at discontinuities. That is, if there exists some tie-breaking rule for

which the payoff function satisfies payoff approachability then in fact the value is invariant

to tie-breaking rules.

In the applications to models of elections, therefore, we show that the value exists and

is independent of tie-breaking rules by verifying that payoff approachability is satisfied by

1In a two-player zero-sum game, maximin and minimax payoffs are defined in terms of supremum and
infimum operators applied to a player’s payoffs, and when these two payoffs are the same the game is said
to have a (unique) value. If equilibrium strategies exist then the value is player 1’s equilibrium payoff. A
maximin strategy for player 1 is a strategy that assures him at least the value for every strategy of player 2,
and a minimax strategy for player 2 is one that holds player 1’s payoff down to the value. More generally,
whenever the value exists each player has an ε-optimal strategy for every ε > 0, and a profile of these
strategies is an ε-equilibrium.

2Other than Dasgupta and Maskin [7] and Parthasarathy [21], who focus on discontinuities along well-
behaved curves with zero measure, the prior literature has not restricted the set of strategies where payoffs
are discontinuous and therefore must allow for pervasive discontinuities.

3Although other games of economic interest, such as auctions and Bertrand-style competition between
duopolists, have payoffs with mild discontinuities, we do not address them here because typically the payoffs
are not zero-sum.

4The terminology is suggestive of what the condition requires. It is not to be confused with Blackwell’s
[3] approachability of a set of players’ payoffs in a repeated game described in footnote 14.
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a particular rule that is convenient for the verification. In several cases this is not the

‘standard’ tie-breaking rule that resolves each tie by tossing a fair coin. Nevertheless, this

method suffices to obtain the general result — the value exists and is the same for every tie-

breaking rule. Moreover, existence of the value implies that for every ε > 0 each candidate

has a strategy that assures a payoff within ε of the value, and thus an ε-equilibrium exists.

Section 3 applies these results to models of elections. Although a contest between two

candidates might proceed dynamically, we consider only the normal form induced by the

game in extensive form. Candidates compete for election by offering policies. If no voter

is indifferent between the candidates’ offered policies then each voter casts her vote for the

candidate whose policy she prefers, and the candidate elected is the one winning a majority

of votes.5 Using the results established in Section 2, we show that if one candidate wins

all ties then the value exists and that candidate has an optimal strategy. For another tie-

breaking rule that is symmetric, we identify assumptions on voters’ preferences sufficient

to imply payoff approachability and thus better-reply security, ensuring that the candidates

have equilibrium strategies that yield the value, and any other tie-breaking rule yields the

same value and has epsilon-equilibria. If the dimension of the space of policies is as large

as the number of voters then these assumptions are satisfied by voters’ preferences that are

generic within a large class. In the case of a continuum of voters, we identify a simple tie-

breaking rule under which the assumptions on voters’ preferences are also satisfied generically,

regardless of the dimension of the policy space. It follows that games with sufficiently large

electorates have epsilon-equilibria for any tie-breaking rule and that such games can be well

approximated by games with a continuum of voters that have equilibria.

Section 4 obtains stronger results for the special case of ‘Colonel Blotto’ games with

weighted-majority rule, which are often used to model election campaigns and lobbying.6 In

these games a candidate’s policy allocates his available resources among several constituen-

cies, each of which votes for the candidate offering more. As in Section 3, such a game has a

value when one of the candidates wins all ties, and this candidate has an optimal strategy.

To address other cases we provide a tie-breaking rule that implies payoff approachability.

Applying our general results to games with this tie-breaking rule shows that the candidates

5See Banks, Duggan, and Le Breton [2] for a synopsis of the prior literature, and their proof under weak
assumptions that if a two-player symmetric zero-sum game has an equilibrium then its support lies within
a subset of policies called the uncovered set. Banks and Duggan [1] study a dynamic model with reputation
effects in which announced policies are ‘cheap talk’ that can differ from candidates’ actual preferences and
implemented policies.

6The moniker Colonel Blotto stems from the paper by Gross and Wagner [13], but studies of such games
date to work in 1921 by Borel; cf. Borel [5] and Borel and Ville [6]. Most analyses of such games assume that
each player’s objective is to maximize the number of votes won, as in Roberson [24], rather than winning a
majority of votes as assumed here.
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have equilibrium strategies that yield the value, and games with any other tie-breaking rule

inherit this value. For the special case that the winner is the candidate obtaining a sim-

ple majority of votes, we show that the value results from an equilibrium that has zero

probability of ties.

1.1. Synopsis and Relation to the Literature. The sequel has two parts: Section 2

defines the class of zero-sum games with mild discontinuities and obtains two new general

existence theorems. Theorem 2.6 shows that a game has a value if all discontinuities are

resolved in favor of one player, and that player has a maximin strategy. Theorem 2.9 shows

that payoff approachability implies existence of an equilibrium, and the value is invariant

across all other resolutions of discontinuities. These theorems are applied in Sections 3 and

4 to models of elections in which the candidate who wins a weighted-majority of votes wins

election. In these applications, mild discontinuities occur where a voter is indifferent between

the two candidates’ proposed policies.

Section 3 considers an election in which two candidates propose policies in anN -dimensional

space over which the K voters have preferences, and the winner is determined by weighted-

majority rule. Theorem 2.6 implies that if all ties are resolved in favor of one candidate then

the value and ε-equilibria exist. This result is new in the literature on voting games, and

tie-breaking in favor of an incumbent or status quo is observed in practice. To establish ex-

istence of an equilibrium, we provide an explicit tie-breaking rule and conditions on voters’

preferences sufficient to imply payoff approachability. Moreover, the value is invariant to

tie-breaking rules, so ε-equilibria always exist, and we show further that equilibria and the

value are limits of those obtained by approximating finite games.7 If N > K − 1 and the

policy space is the convex hull of the voters’ ideal points, then these conditions are satisfied

generically by voters’ preferences represented by concave differentiable utility functions. Al-

though restrictive, these conditions improve on the few results in the literature.8 Moreover,

as we provide examples of simple games with N = 2 and K = 3 where a value does not

exist, there is not much room for improving on the conditions that we identify. Nevertheless,

on the other extreme of a large number of voters, payoff approachability is verified using

7Invariance of the value resembles the result of Jackson and Swinkels [15] for auctions with an atomless
distribution of bidders’ private values, for which they show existence of equilibria invariant to the tie-breaking
rule; in particular, because some equilibria are invariant, to prove existence one can rely on endogenous
sharing as in Simon and Zame [26]. For the electoral model studied here, we obtain the weaker result that,
when payoff approachability is satisfied, it is the value that is invariant, not necessarily the strategies. This
invariance of the value follows from payoff approachability, whereas in an auction, existence of invariant
strategies stems from the assumed atomless distribution of bidders’ valuations.

8Duggan [10] shows existence for the case of a convex policy space and N = 2 and K = 3; and Duggan
and Jackson [12] allow more general conditions on voters’ preferences but rely on endogenous tie-breaking
to show existence of equilibria for simple-majority rule.
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the symmetric tie-breaking rule of zero payoff in case of ties, without any restriction on the

dimension N .

Section 4 considers the special case of Colonel Blotto games with majority rule. The

results of Section 3 apply fully to this case since N = K − 1 and voters’ utilities are linear.

Thus we obtain a complete solution to the problem of existence of equilibria and a value. The

only prior result for majority rule is by Duggan [11], who assumes simple-majority rule and

symmetric resources, whereas we allow weighted-majority rule and asymmetric resources. We

show further that the value is invariant to the tie-breaking rule, so ε-equilibria always exist,

and for simple-majority rule, we show existence of an equilibrium for which the probability

of ties is zero. The other literature on Colonel Blotto games assumes plurality rule or other

simpler rules to which our results also apply.

2. General Existence Theorems

We start by presenting general results for zero-sum games. Appendix A provides the

proofs omitted in this section.

The reader interested in particular results for spatial models of elections and Colonel

Blotto models can either skip to Sections 3 and 4, respectively, or appreciate the results that

follow without studying their details.

We study two-player zero-sum games with the following general features. In each game,

the two players are labeled by i = 1 and 2. Given a player i, let j be the other player. For

each player i, his set Xi of pure strategies is a compact metric space and his set Σi of mixed

strategies is the set of Borel probability measures on Xi endowed with the weak-∗ topology.9

Since Xi is a compact metric space, so is Σi.

Let X = X1 ×X2 and Σ = Σ1 ×Σ2 denote the sets of profiles of players’ pure and mixed

strategies. Player i’s payoff function from pure strategies is a Borel-measurable function

πi : X → [−1,+1], where π1 + π2 = 0, and it is extended to the expected payoff from mixed

strategies via πi(σ1, σ2) = Eσ1,σ2 [πi(x1, x2)] for each profile (σ1, σ2) ∈ Σ.10 Recall that when

(σn1 , σ
n
2 ) → (σ1, σ2), the corresponding product measure σn1 ⊗ σn2 converges to σ1 ⊗ σ2. So

Eσ1,σ2 [f(x1, x2)] is upper semi-continuous (u.s.c.) if f : X → R is u.s.c., and l.s.c. if f is l.s.c.

Let D ⊂ X be the subset consisting of those pure-strategy profiles at which π1 and π2 are

discontinuous. D is a Borel measurable set (cf. Billingsley [4, Appendix M10]). We focus on

9It is sufficient that the strategy sets be compact. Metrizability is assumed to simplify the exposition of
the proofs by allowing us to use sequences rather than nets. See Remark A.3(2) for more on this.

10The restriction to [−1,+1] as the range is without loss if the payoff functions are bounded. But all that
we require is that the payoffs are bounded in a neighborhood of the set of discontinuities; see also Remark
2.3.
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games for which D is not empty, although we do not assume it explicitly. For each player

i and his pure strategy xi ∈ Xi, let D(xi) ⊂ Xj be the cross-section of D at xi, i.e. the set

of xj such that (xi, xj) ∈ D. The class of games with mild discontinuities consists of those

that satisfy the following assumption.

Assumption 2.1 (Mild Discontinuities). For each player i the set {σi ∈ Σi | σi(D(xj)) =

0 ∀xj ∈ Xj } is dense in Σi.

For future reference, we record one implication of Assumption 2.1:

Lemma 2.2. Assumption 2.1 implies that for each mixed strategy σj of a player j the set

{xi ∈ Xi | σj(D(xi)) = 0 } is dense in Xi.

Remark 2.3. Standard existence theorems for zero-sum games—cf. Mertens [20] and Reny

[23]—require only that the strategy sets be compact, and that the payoff function (in mixed

strategies) of each player be upper semi-continuous in his strategy. If we define D to be the

set of profiles where upper semi-continuity fails in the strategy of at least one of the players,

then our results go through, even allowing for the payoffs to be unbounded, as long as the

payoffs are bounded in a neighborhood of D.

Say that a pure strategy xi ∈ Xi of player i is a point of continuity against the other

player j’s mixed strategy σj ∈ Σj if σj assigns zero probability to the cross section D(xi). At

such a pair of strategies, player i’s expected payoff πi(xi, σj) is independent of how payoffs

are determined at profiles in D(xi). The phrase “point of continuity” is justified by Lemma

2.5 below.

The following sufficient condition for Assumption 2.1, which is satisfied in many typical

games, is readily verifiable.

Lemma 2.4. If Xj is a finite dimensional manifold then Assumption 2.1 holds if, for each

xi ∈ Xi, D(xi) is a set of lower dimensionality in Xj.
11

We consider a basic game and the corresponding family of games that differ only in their

payoffs at profiles in D, which in applications correspond to the possible resolutions of ties.

Represent the basic game as G(π) where π1 = π and π2 = −π. Variants of this basic game

are parameterized by the set Π of payoff functions π′ : X → [−1, 1] such that π′(x) = π(x)

for all x /∈ D. Thus the family of games is {G(π′) | π′ ∈ Π}.

11If Xj is in addition a subset of an Euclidean space, then Assumption 2.1 is satisfied if the Lebesgue
measure of D(xi) is zero for each xi ∈ Xi.
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Let δxi denote the Dirac measure in Σi concentrated at xi ∈ Xi. Observe that πi(xi, ·) =

πi(δxi , ·), so we shall use both notations for expositional purposes. The following is a direct

application of the Mapping Theorem (Billingsley [4, Theorem 2.7]).

Lemma 2.5. If σj(D(xi)) = 0 then player i’s payoff function π′i is continuous at (δxi , σj) ∈
Σi × Σj.

For each payoff function π′ ∈ Π, player 1’s maximin and minimax values are

v(π′) = sup
σ1∈Σ1

inf
x2∈X2

π′(σ1, x2) and v(π′) = inf
σ2∈Σ2

sup
x1∈X1

π′(x1, σ2) ,

where necessarily v(π′) 6 v(π′). If v(π′) = v(π′) ≡ v∗(π′) then v∗(π′) is called the value of

the game G(π′) to player 1.

2.1. The Case that One Player Wins All Ties. Of particular interest are the two games

G(π+) and G(π−) defined as follows: π+
1 (x) = +1 and π−1 (x) = −1, for each profile x ∈ D.

In applications these correspond to the two cases where one player wins all ties, or in a

legislative context that the status quo is the default outcome in the event of a tie. The

following theorem establishes existence of values for these games.

Theorem 2.6. If π′ = π+ or π′ = π− then the value v∗(π′) exists. Moreover, in the game

G(π+) player 1 has a maximin strategy, and in the game G(π−) player 2 has a minimax

strategy.

The proof uses the fact that mild discontinuities allows one to approximate the game

with continuous games that have values and optimal strategies. Because the approximating

strategy of player 2 is feasible in the given game, the limiting value v∗ cannot be smaller

than the minimax value v(π+). By mild discontinuities again, and by the asymmetry of the

tie-breaking rule, player 1 can guarantee v∗ using the limiting strategy σ∗1.

Remark 2.7. Define the u.s.c. and l.s.c. payoff functions πi, πi : X → R by πi(x) ≡
supxn→x lim supn πi(x

n) and πi(x) ≡ infxn→x lim infn πi(x
n). Then πi > πi > πi with equal-

ities on X \ D. Let Π and Π be the sets of u.s.c. and l.s.c. functions in Π that majorize π

and minorize π, respectively. The optimal strategy of player 1 in π+ derived in the proof

of Theorem 2.6 is an optimal strategy in each game in Π, and the value v∗(π+) is the value

of each game in Π. Hence the tie-breaking rule favoring player 1 could be the rule that

generates a game π ∈ Π — and analogously for each game π ∈ Π.
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2.2. A Sufficient Condition for Existence of an Equilibrium. A game that has a value

has an ε-equilibrium σε for every ε > 0. Also, if it has a value and player i has an optimal

strategy σ∗i ,
12 then for every ε > 0, σεi can be chosen to be σ∗i . While Theorem 2.6 shows

that two specific variants of a game have a value, ideally one wants an existence result that

does not depend on how ties are resolved. To obtain such an invariance result, we invoke

the following sufficient condition.13

Definition 2.8 (Payoff Approachability). A payoff function π̃ ∈ Π satisfies payoff approach-

ability if for each player i, his pure strategy xi ∈ Xi, and the other’s mixed strategy σj ∈ Σj,

π̃i(xi, σj) 6 sup
xni→xi

lim sup
n

π̃i(x
n
i , σj) ,

where the supremum is over all sequences {xni } ⊂ Xi converging to xi for which each pure

strategy xni in the sequence is a point of continuity against σj.

Payoff approachability requires that a player’s payoff cannot be more than the limit of

what he can get from nearby points of continuity against any strategy of his opponent.14

Roughly, payoff approachability assures that a player can avoid unfavorable ties by moving

slightly away from them. In the applications to voting games we specify tie-breaking rules

and assumptions on voters’ preferences sufficient to imply payoff approachability.

Theorem 2.9. If there exists a payoff function π̃ ∈ Π satisfying payoff approachability then:

(1) G(π̃) has an equilibrium that yields the value v∗(π̃).

(2) For each ε > 0, each player j has a strategy σεj that is ε-optimal in G(π̃) and such

that σεj (D(xi)) = 0 for all xi ∈ Xi.

(3) For each payoff function π′ ∈ Π, the value v∗(π′) exists and is the same as v∗(π̃); that

is, the value is invariant.

As in the proof of Theorem 2.6, we use well behaved approximating games to construct

candidates v∗ and σ∗, and obtain π̃(x1, σ
∗
2) 6 v∗ for points of continuity against σ∗2. Then

payoff approachability allows extends the inequality to all x1 ∈ X1 because the discontinuity

cannot favor player 1 so much as to reverse this inequality. Moreover, by construction,

12That is, a maximin strategy if i = 1 and a minimax strategy if i = 2.
13Observe that for any payoff function π′, v∗(π−) = v(π−) 6 v(π′) 6 v(π′) 6 v(π+) = v∗(π+), so the

value is independent of π′ iff v∗(π−) = v∗(π+). Payoff approachability ensures this last equality.
14We use the name payoff approachability to distinguish it from Blackwell’s [3] definition for repeated

games of approachability of a subset of the players’ pairs of possible long-run average payoffs, which requires
that for some mixed strategy of one player and any mixed strategy of the other player, eventually the
resulting sequence of time-average payoffs is arbitrarily close to the set with arbitrarily high probability.
The restriction to nearby points that are points of continuity against σj implies that we could have used πi
instead of π̃i in the right-hand side of the above inequality.
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equilibria of approximating games have no ties, so player 2 can hold player 1 down to v∗(π̃)

for any tie-breaking rule.

Remark 2.10.

(1) Although part (3) establishes that if some payoff function π̃ ∈ Π satisfies payoff

approachability then for every payoff function π′ ∈ Π the game G(π′) has a value

v(π′) = v(π̃), it need not be in G(π′) that a player has an optimal strategy, or if

he does then it could depend on the tie-breaking rule; see Remark 4.5 below for

an example. Nevertheless, the proof establishes that for each ε > 0 player 1 has a

strategy that assures at least v∗(π′)−ε regardless of the tie-breaking rule. Even if no

payoff function in Π satisfies payoff approachability, it is still possible that for every

payoff function π′ ∈ Π the game G(π′) has an equilibrium and a value, but the value

depends on the tie-breaking rule. An example is the “diagonal game” at the end of

Section 2.3 below.

(2) In some applications, some strategies may be (weakly) dominated and payoff ap-

proachability seems irrelevant for these profiles. The hypothesis of Theorem 2.9 can

be weakened as follows. Suppose each player i has a compact subset X∗i of Xi such

that for each xi ∈ Xi, there exists xi ∈ X∗i such that π̃i(x
∗
i , σj) > π̃i(xi, σj) for

all σj. Then for the conclusion of Theorem 2.9 to hold it is sufficient that payoff

approachability holds for all xi ∈ X∗i for each player i.

(3) If payoff approachability holds just for just one player i, in the sense that it holds for

all (xi, σj) for fixed i and j, then the game has a value and player j has an optimal

strategy. For instance, this happens in the games π+ for i = 2 and π− for i = 1.

Lemma A.2, from the proof of Theorem 2.9, yields the following corollary about finite ap-

proximations. Recall that every two-player zero-sum game with finite sets of pure strategies

has a value obtained from equilibrium strategies that can be computed by linear program-

ming.

Corollary 2.11. Suppose there exists a payoff function π̃ ∈ Π satisfying payoff approacha-

bility. Consider a sequence of finite games G(π̃n), where π̃n is the restriction of π̃ to profiles

in Σn
1 × Σn

2 ⊂ Σ, with Σn
i being the set of mixed strategies over the finite set of strategies

Xn
i ⊂ Xi, and each sequence Σn

i converges to Σi in the Hausdorff topology on closed subsets.

Let σn and vn be an equilibrium and the value of G(π̃n) for each n. Then every limit point

of σn is an equilibrium of G(π̃), and vn converges to v∗(π̃).
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This corollary has practical implications for computation. It implies that the linear pro-

gram for a finite approximation of a game satisfying payoff approachability for some tie-

breaking rule one can use pure-strategy profiles in X \ D at which payoffs are continuous,

independently of the actual tie-breaking rule.

We conclude this subsection with a sufficient condition for a payoff function π̃ to satisfy

payoff approachability. The simplification achieved by this result is that in a class of games,

which includes our subsequent applications, it is enough to check whether payoff approacha-

bility holds against mixed strategies with finite support. More precisely, if a payoff function

satisfies condition (1) of Proposition 2.12 below, then payoff approachability is equivalent to

condition (2).

Proposition 2.12. A payoff function π̃ ∈ Π satisfies payoff approachability if:

(1) For each i, xi, D(xi) can be partitioned into finitely many Borel-measurable subsets

D1(xi), . . . , D
n(xi) such that for each 1 6 l 6 n:

(a) π̃i(xi, ·) is constant on Dl(xi).

(b) For each closed Al ⊆ Dl(xi), π̃i(yi, ·) is constant on Al for an open and dense set

of yi’s in a neighborhood U of xi.

(2) The condition in Definition 2.8 of payoff approachability holds for i, xi and σj where

the support of σj is finite and contained in D(xi).

2.3. Relation to Reny’s Conditions. Theorem 2.6 adds to the literature on sufficient

conditions for existence of equilibria. To see this consider the following example.

Example 2.13. The sets of pure strategies are X1 = X2 = [0, 1] and player 1’s payoff is

π1(x1, x2) =

 x1 if x1 < x2

1− x1 if x1 > x2

1 if x1 = x2

The set D is the diagonal x1 = x2, and this is the π+ version, where player 1 gets +1 on

D. Consider a sequence of profiles (δ1/2, δ1/2+1/n). The profile of payoffs along the sequence

is (1/2,−1/2). The sequence converges to the profile (δ1/2, δ1/2) with associated profile of

payoff limits (1/2,−1/2). The limiting profile is not an equilibrium, as player 2 gets −1 and

could get −1/2 by any x2 6= 1/2. Better-reply security fails: if σ1 is a strategy of player 1, for

each ε, we can choose a point x2(ε) in the interval (1/2− ε, 1/2) that is a point of continuity

against σ1 and π1(σ1, x2(ε)) 6 1/2 + ε. Likewise, against δ1/2, player 2 gets −1 for x2 = 1/2

and −1/2 for any x2 6= 1/2, so π2(δ1/2, σ2) 6 −1/2 for all σ2 ∈ Σ2. Thus no strategy of

either player can secure strictly more than the corresponding payoff limit. Yet Theorem 2.6
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establishes existence of a value and of a maximin strategy for player 1. (It is directly verified

that the value of the game is 1/2 and (σ1, σ2), with σ1 = δ1/2 and σ2 = (1/2)δ0 + (1/2)δ1, is

an equilibrium.) See Section 4 for another example.

On the other hand, the direction taken by Theorem 2.9 is evidently a specialization of

better-reply security.15 To illustrate, we note that its proof fails in the standard example

of a zero-sum game without a value due to Sion and Wolfe [27] because this game violates

payoff approachability.

Example 2.14 (Sion-Wolfe Example of a Game with No Value). There are two players,

with strategy sets X1 = X2 = [0, 1]. Player 1’s payoff is

π1(x1, x2) =

 −1 if x1 < x2 < x1 + 1/2
0 if x2 = x1 or x2 = x1 + 1/2
1 otherwise

If we take x1 = 0 and σ2 = δ1/2 then π1(x1, σ2) = 0, while π1(xn1 , σ2) = −1 when we take

a sequence of points of continuity. A similar situation holds for x1 = 1 and σ2 = δ1. The

fundamental problem is that these are boundary points for player 1 and one can approach

such a point from only one side. By the same logic, there is no payoff function π̃ ∈ Π satisfying

payoff approachability. In fact, payoff approachability forces π̃1(1, 1) = −1, as π1(xn1 , 1) = −1

for all sequences xn1 → 1, and also −π̃1(1, 1) = π̃2(1, 1) = −1, as π2(1, xn2 ) = −1 for all

sequences xn2 → 1.

The same logic applies even to the better-reply secure “diagonal game” for which π1 is

−1 if x2 > x1, +1 if x1 > x2, and 0 if x1 = x2. More generally, such a game has a pure-

strategy equilibrium (x1, x2) = (1, 1) yielding the value v ∈ [−1,+1] when a tie-breaking

rule specifies π1 = v on the diagonal where x1 = x2. Because the value v depends on the

tie-breaking rule that specifies v, there cannot exist a payoff function π̃ ∈ Π that satisfies

payoff approachability.

We note that for a general n-player, non zero-sum game (Xi, πi)
n
i=1, payoff approachabil-

ity and mild discontinuities, together with
∑n

i=1 πi upper semicontinuous in X = ×ni=1Xi,

provide a straightforward extension of the conditions in Dasgupta and Maskin [7] for gen-

eral strategy spaces.16 Of course, Reny’s payoff security and reciprocal upper semicontinuity

subsume all such conditions.

15Indeed, payoff approachability is a specialization of payoff security. We note that Reny’s theorem is
sometimes difficult to apply, especially to show existence of a mixed-strategy equilibrium. So the specializa-
tion to payoff security is not an issue.

16Dasgupta and Maskin [7] only allowed for one-dimensional strategy spaces.
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Finally, let us illustrate invariance of the value when there is one π̃ ∈ Π satisfying payoff

approachability.

Example 2.15. Again, consider a two-player game with X1 = X2 = [0, 1], and player 1’s

payoff described in Figure 1 below:

Figure 1

X1

X2

0

0

1

−1

D

Setting π̃1 = 0 at D, payoff approachability is readily verified and x1 = x2 = 0 is a Nash

equilibrium, yielding the value v(π̃) = 0. Now consider π+, with π+
1 = 1 at D. Better reply

security is violated at (0, 0), as it is not a Nash equilibrium and no player can secure strictly

more than the payoff limit of zero. Yet, as π̃ ∈ Π satisfies payoff approachability, the value

of π+ (which must exist from Theorem 2.6) must be equal to zero from Theorem 2.9. In fact,

v(π+) > 0, as x1 = 0 yields at least zero; for each integer k, let σk2 be the simple average

of k + 1 uniform distributions over the intervals [0, 2−k/3], [0, 2−(k−1)/3], ..., [0, 1/3]. Then

one verifies that π1(x1, σ
k
2) is at most of order 1/k for every x1 ∈ [0, 1], establishing that

v(π+) 6 0 and thus v(π+) = 0. It also establishes that player 1 has a maximin strategy,

whereas player 2 need not have one (i.e. (x1 = 0, σ2 = σk2) is an 1/k-equilibrium for every

k.) The symmetric argument verifies that v(π−) = 0, so the value exists for every π′ ∈ Π

and is equal to zero.

3. Models of Elections

In this section we address models of elections, as in Downs [9]. Each candidate proposes

a policy and gets votes from those voters who prefer his policy to the policy proposed by

the other candidate. First we apply Theorem 2.6 to conclude that if one candidate, say the

incumbent, wins all ties then a value exists and the incumbent has an optimal strategy that

ensures this value. Then, invoking assumptions on voters’ preferences, we show that payoff

approachability is satisfied for a specified tie-breaking rule. Therefore, Theorem 2.9 implies
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existence of an equilibrium that yields the value, and this is also the value for any other

tie-breaking rule (so there exists an ε-equilibrium for every ε > 0).17

3.1. Formulation. The game G is specified as follows. Two candidates compete in an

election for the votes of K voters, where K > 2, by choosing a policy from a set P of feasible

policies. Specifically, each candidate i’s set of feasible policies is a subset Xi ⊂ P , and the

set of feasible profiles of policy proposals is X = X1 ×X2.18 If voter k chooses candidate i

then i gets wk votes, where each 0 < wk < 1/2 and
∑

k wk = 1. A candidate who gets more

than half the votes wins election and receives the payoff +1, and the loser receives the payoff

−1. In the case of a draw, in which the candidates get equal numbers of votes, their payoffs

are both zero. As in Section 2, the payoff function of candidate i is πi : X → [−1,+1], which

can depend on how voters choose between tied policies.

Each voter is assumed to choose the candidate whose policy she prefers; that is, only the

policies matter, not the identities of the candidates who propose them. We represent voter

k’s preferences by a utility function uk : P → R. Then at a profile (x1, x2) 6∈ D with no ties,

πi(x1, x2) = sign[
∑

k∈Wi(x1,x2) wk − 1/2] where Wi(x1, x2) = {k | uk(xi) > uk(xj)} is the set

of voters who prefer the policy of candidate i.

We impose the following assumptions on the policy space and the voters’ preferences.

Assumption 3.1 (Basic Assumptions).

(1) For each candidate i, his set Xi ⊆ P is a manifold

(2) Each voter’s utility function is continuous, and the intersection of each indifference

curve with Xi is a lower-dimensional set for each i.

Lemma 3.2. The game G is mildly discontinuous.

Proof. For each policy xi, the cross-section D(xi) of D is contained in the intersection of Xj

with a finite union of indifference sets in P , one for each voter, each of which is a lower-

dimensional set, so Assumption 2.1 is satisfied using Lemma 2.4. �

3.2. The Case That One Candidate Wins All Ties. Theorem 2.6 implies that if one

candidate wins all ties then a value exists and that candidate has an optimal strategy that

ensures at least the value.

17Plott [22] shows that an equilibrium in pure strategies exists only if voters have highly non-generic
utility functions. Duggan [10] shows that an equilibrium exists in the case of three voters and the standard
tie-breaking rule. Duggan and Jackson [12] show that an equilibrium exists under more general assumptions,
but they rely on endogenous tie-breaking as in Simon and Zame [26].

18Typically, symmetry is imposed in such models by assuming that X1 = X2, but our results do not
require this assumption. We apply this more general formulation to asymmetric Colonel Blotto games in
Section 4.
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3.3. Assumptions on Voters’ Preferences. Now we impose further assumptions on vot-

ers’ preferences and their strategy sets that, together with the tie-breaking rule specified in

subsection 3.5, imply payoff approachability and thus existence of an equilibrium.

Our first assumption assures a unique winner when there are no ties. Remark 3.13(2) shows

why this assumption can matter for a weighted-majority game; however, this assumption is

omitted in the case of simple-majority games addressed later.

Assumption 3.3. For each subset L of voters,
∑

k∈Lwk 6= 1/2.

Say that a subset of voters L is a minimal subset of voters for whom xi is Pareto optimal

if: (i) xi is Pareto optimal for voters in L among the policies in Xi; and (ii) there does

not exist a strict subset of L for whom it is Pareto optimal. For each policy xi ∈ Xi, let

K(xi) be the subset of voters for whom xi is an ideal policy in Xi, i.e. xi maximizes uk over

Xi. Obviously each voter in K(xi) is a singleton minimal set for whom xi is optimal among

policies in Xi. Let K denote both the number and the set of voters.

Assumption 3.4 (Diversity of Preferences). For each candidate i and policy xi ∈ Xi:

(1) The policy xi is Pareto optimal in Xi.

(2) For each minimal subset L of voters for whom the policy xi is Pareto optimal, each

voter k ∈ L, and each neighborhood V of xi, there exists a policy yi in V such

that uk′(xi) < uk′(yi) for every voter k′ in K \ K(xi) other than voter k, while

uk′(xi) > uk′(yi) for all voters k′ ∈ K(xi) ∪ {k}.

Remark 3.13(1) below shows how to relax Assumption 3.4(1). Assumption 3.4(2) is crucial

to establishing payoff approachability, as it allows each candidate to move away from a

particular policy and capture all other voters but one, except those voters for which the policy

is already ideal. We discuss in subsection 3.4 the restrictions it imposes after introducing

one further assumption, but first some additional notation is required.

Observe that there exists at most one minimal subset L of K \ K(xi) for whom xi is

Pareto optimal if the assumption is satisfied. Indeed, if there were two such L’s, say L and

L′, then picking k ∈ L, it would be possible to find yi that is better than xi for all voters in

L′, contradicting the Pareto optimality of xi. Moreover there exists one iff K(xi) is empty.

Thus define K∗(xi) to be K(xi) if the latter is nonempty and otherwise the unique minimal

subset L of K for which xi is Pareto optimal.19

19If we had assumed that the ideal policies of voters are all different, then each xi has a unique minimal
subset of voters for whom xi is Pareto optimal. We do not impose this assumption because models with linear
preferences over a convex set could admit the robust possibility that the same policy is ideal for multiple
voters.
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Given a policy xi ∈ Xi, for every neighborhood V (xi) of xi, and every k ∈ K∗(xi), from As-

sumption 3.4 we can choose a policy yi(V (xi), k) ∈ V (xi) such that uk′(xi) < uk′(yi(V (xi), k))

if k′ 6= k and belongs to K \ K(xi); and uk′(xi) > uk′(yi(V (xi), k)) otherwise. To simplify

notation, we use yki to denote yi(V (xi), k).

If x = (x1, x2) ∈ D then for each i, define Li(x) as the set of voters k such that uk(xi) >

uk(xj), and L0(x) as the set of voters k such that uk(xi) = uk(xj); L
∗
i (x) ≡ K∗(xi) ∩ L0(x);

and Li(x) = K(xi) ∩ L0(x). For all sufficiently small neighborhoods V (xi) of xi, for each

yi ∈ V (xi), uk(yi) > uk(xj) for all k ∈ Li(x) and uk(yi) < uk(xj) for all k ∈ Lj(x).

Observe that by construction the payoffs are then well-defined without ties for (yki , xj) for

each k ∈ K∗(xi). Thus, by Assumption 3.3, πi(y
k
i , xj) is ±1.

With this notation, we can introduce our next assumption. Suppose x ∈ D and that

either Li(x) is nonempty or |L∗i (x)| > 2. Let l∗i (x) be a voter in L∗i (x) with wl∗i (x) 6 wk′ for

all k′ ∈ L∗i (x). For each i, let V (xi) be a neighborhood of xi such that for all yi ∈ V (xi),

uk(yi) > uk(xj) for all k ∈ Li(x) and uk(yi) < uk(xj) for all k ∈ Lj(x).

Assumption 3.5 (Relationship Between Candidates’ Strategy Sets). If candidate i’s policy

y
l∗i (x)
i loses to the policy xj then, for each k ∈ K∗(xj), candidate j’s policy ykj beats xi.

This assumption depends on the neighborhoods only to the extent that voters who are not

indifferent between xi and xj treat policies in the two neighborhoods the same way. Hence

if it holds for some pair of neighborhoods then it holds for all smaller neighborhoods.

Example 3.6. We illustrate the assumptions with an example. There are 4 voters and

the dimension of the police space is 3. So K = 4 and N = 3. Voter k’s utility function

is uk(x) = −
∑3

n=1(xn − akn)2, where the ideal points are a1 = (1, 0, 0), a2 = (0, 1, 0),

a3 = (0, 0, 0), and a4 = (0, 0, 1). The space of policies P is the tetrahedron obtained as

the convex hull in R3 of the ideal points. Observe that this is the set of Pareto optimal

policies, which we assume to be the set of strategies for both candidates. The following

voters’ weights satisfy Assumption 3.3: w1 = 0.11, w2 = 0.20, w3 = 0.29 and w4 = 0.40. For

a given policy xi ∈ P , the minimal subset L of voters for which xi is Pareto optimal is given

by the voters whose ideal points span the face on which xi lies. For instance, for a, b > 0

with a + b < 1, L = {1, 2} if xi = (a, 1 − a, 0); L = {1, 3} if xi = (a, 0, 0); L = {1, 2, 4} if

xi = (a, b, 0); and L = {1, 2, 3, 4} if xi is in the interior of P . K(xi) = {k} if xi = ak and it

is empty for policies not equal to an ideal point. Assumption 3.4 is easily verified: if xi = ak

then L = {k} and moving to the interior of P we find the required yi (denoted yki ); if xi

belongs to the face spanned by voters including voter k, then the required yki for voter k is

found by moving to the interior of P away from ak.
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Consider x = (xi, xj) ∈ D given by xi = (1/4, 1/4, 0) and xj = (1/4, 0, 1/4). Then

Li(x) = {2}, Lj(x) = {4} and L0(x) = {1, 3}. AlsoK∗(xi) = {1, 2, 3} andK∗(xj) = {1, 3, 4},
so L∗i (x) = L∗j(x) = {1, 3}. Hence l∗i (x) = l∗j (x) = {1}.

Observe that y
l∗i (x)
i loses voter 1 (because l∗i (x) = {1}), wins voter 3 and does not change

the other two voters (relative to xj – so 2 still prefers i’s policy y
l∗i (x)
i over xj, whereas

4 prefers xj over y
l∗i (x)
i ). Given the weights specified above, y

l∗i (x)
i loses to xj, as it gets

0.20 + 0.29 = 0.49 votes, whereas xj gets 0.51 votes. To illustrate Assumption 3.5, we must

show that ykj beats xi for k = 1, 3, 4. It is obvious for k = 4, as u4(xj) > u4(xi), V (xj) is

chosen so that this inequality is preserved for all yj ∈ V (xj), and y4
j wins the tied voters 1

and 3. For k = 3, y3
j loses voter 3, wins voter 1 and does not change the other two voters

(relative to xi), so it gets 0.11 + 0.40 = 0.51 votes and beats xi. Likewise for k = 1, as now

y1
j wins voter 3, so it gets 0.29 votes on top of the 0.40 votes already obtained from voter 4.

3.4. Discussion of the Assumptions. We now discuss the restrictiveness of the assump-

tions about voters’ preferences. We show later that the Colonel Blotto games addressed in

Section 4 necessarily satisfy Assumptions 3.4 and 3.5. In these games the voters’ utilities are

linear and the policy spaces are polytopes of dimension N = K − 1, where K is the number

of voters.

In fact, if N > K − 1, P is convex, and voters’ utility functions are differentiable, strictly

quasi-concave, and generic in the space of such preferences, then the assumptions are satis-

fied. By genericity, the rank of the matrix of gradients at a Pareto optimal policy is K − 1

and Assumption 3.4 is satisfied. If xi is an ideal policy of a voter k (and then the only voter,

because of the rank condition on the matrix of gradients), then Li(x) is nonempty iff xi = xj

and then Assumption 3.5 holds vacuously since yki beats xj. On the other hand if L∗i (x)

has at least two voters, and y
l∗i (x)
i loses to xj, then it must be that candidate i needs all the

voters in L0(x) to win: y
l∗i (x)
i loses for the tied voter l∗i (x) ∈ L∗i (x) with the least vote and

wins for all other tied voters, and yet it loses to xj, so candidate j needs just one of the tied

voters to win election. And, for each k ∈ K∗(xj), it is simple to find a ykj that achieves that

much, given that Assumption 3.4 holds, so Assumption 3.5 is satisfied too.

For example, if the voters have Euclidean preferences, say uk(p) = −‖p − ak‖, where

ak ∈ RN is voter k’s ideal policy, then the Pareto set is the convex hull of the ideal points

ak. If N > K − 1 and the ideal policies are the extreme points of the Pareto set, then the

assumptions are satisfied if each candidate’s strategy set is this Pareto set. But if one adds

more voters with ideal points in the interior of this Pareto set then Assumption 3.4 need not

be satisfied.
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Example 3.7. Payoff-approachability can also fail when N < K − 1, even if an equilibrium

and therefore the value exists. For the example, suppose there are seven voters and the policy

space of each candidate is the set of lotteries over three outcomes o1, o2, o3 ∈ P , so K = 7

and N = 2. The seven voters’ utilities (uk(o1), uk(o2), uk(o3)) for the three outcomes are

(1, 0.6, 0), (1, 0.5, 0), (1, 0, 0.6), (0, 1, 0.6), (0.6, 1, 0), (0.6, 0, 1), and (0, 0.6, 1), and for each

voter his expected utility is linear, uk(p) =
∑

` uk(o`)p`. Payoff-approachability is violated

at the profile where both candidates offer the policy that yields the boundary point o1 for

sure. Even so, that profile is an equilibrium.

The following examples go further and illustrate that existence of a value is not guaranteed

even when the number of voters K is small relative to the dimension N of the policy space.

Example 3.8. Refer to Figure 2 below. The strategy sets are the same and equal to the

union of the two shaded triangles (the policy space P is a larger underlying set in R2.) There

are 5 voters, each with convex preferences illustrated by the indifference curves drawn. The

key feature is that feasibility considerations preclude some policies that the voters have

preferences for. That is, preferences are defined over P , but only the two depicted triangles

of policies are feasible. Observe that policy a is (simple) majority preferred to every feasible

policy x other than policy b. Observe also that b has the upper hand in a tie with a: it

gets two votes (from voters 2 and 3) whereas a gets only one (from voter 1), while voters

4 and 5 are indifferent. Under the standard tie-breaking rule under which each indifferent

voters tosses a coin to decide to whom to vote, b beats a with probability 3/4 (and is beaten

with probability 1/4), so π(a, b) = −1/2. Assume that voter 1’s preferences are such that b

is majority beaten by every policy other than a and every policy in the southwest triangle

(other than a) majority beats the northeast triangle.
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Figure 2

a

b

4

5

2 3

1

We claim the the game has no value. First, because it is a symmetric game, v(π) > 0. Now

fix σ1. If σ1({a}) 6 11
24

, then consider a sequence {xn} converging to a along the downward

sloping edge of the southwest triangle. Each xn beats almost every other policy: it is just

beaten by a small region in the southwest triangle below voter 1’s indifference curve through

xn. As this region shrinks to a, we have

lim
n
π(σ1, x

n) = −σ1(P \ {a}) + σ1({a}) 6 − 2

24
,

so there is x2 with π(σ1, x2) < − 1
24

. If instead σ1({a}) > 11
24

, and σ1(P \ {a, b}) 6 5
24

, then

π(σ1, b) <
5
24
− 1

2
(11

24
) = − 1

48
; otherwise, σ1(P \ {a, b}) > 5

24
and π(σ1, a) < 1

2
(16

48
)− 5

24
= − 1

24
.

In sum, for each σ1, there is an x2 such that π(σ1, x2) < − 1
48

, which means that v(π) 6 − 1
48

,

verifying our claim.

Observe that a non generic feature of the example is that voters 4 and 5 consider two

specific policies (a and b) indifferent. Still, consider a weighted majority version with only

three voters: voters 1, 2 and 4, with weights w1 = w4 = .3 and w2 = .4, with the same

policy space P . Then again b has the upper hand in a tie with a, and a similar argument

establishes that the value does not exist.

Here’s another example of nonexistence of a value, now with a connected policy space.

Example 3.9. Refer to Figure 3 below. Again X1 = X2, given by the shaded area, whereas

P is a larger set in R2. There are three voters with the indifference curves as drawn.
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Figure 3

b

a

2
3

1

Assume that voters abstain when indifferent, and that policy b enjoys the status of a “status

quo”: if b is a proposed policy and a majority is not reached to upset b, then b wins. In

particular, π(a, b) = −1, as only voter 1 votes for a and the other two abstain. A similar

analysis shows that the game has no value (in fact, the same argument now establishes that

− 1
24

is an upper bound for v(π).)

In fact, it is simple to verify that the value does not exist in Examples 3.8 and 3.9 as long

as b has the upper hand in a tie with a. If instead π(a, b) > 0, then the value is zero and both

games have equilibria: if π(a, b) > 0 the unique equilibrium is to play a with probability

1 and if π(a, b) = 0 there are multiple equilibria where candidates mix between a and b,

provided that the probability of a is at least 1/2. Observe that Assumption 3.4 is violated

in both examples at the policy a.

Thus, Examples 3.8 and 3.9 show that a value may fail to exist even with N = 2 and

K = 3 (with standard tie-breaking rule and weighted majority in Example 3.8 and with a

non-standard tie-breaking rule in Example 3.9.) In such cases a general existence theorem

for the value (and hence for an equilibrium) is not possible.

3.5. Existence of an Equilibrium. We now provide a tie-breaking rule that in combi-

nation with the previous assumptions on voters’ preferences implies payoff approachability,

and therefore an existence theorem for weighted-majority games. The tie-breaking rule is

specified in terms of the implied payoff function π̃ ∈ Π.

Definition 3.10 (Tie-Breaking Rule T ). Suppose the profile x is in D.

(T1) For each i, let V (xi) be as in Assumption 3.5. If for some i, Li(x) is nonempty

or L∗i (x) has at least two voters, and if y
l∗i (x)
i loses to xj, then π̃i(xi, xj) = −1 and

π̃j(xi, xj) = +1.
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(T2) In all other cases, π̃i(xi, xj) = 0 for each candidate i.20

As above, when y
l∗i (x)
i loses to xj, candidate j is in a very advantageous situation. For

instance, at the pair (xi, xj) described in Example 3.6, candidate j has 0.40 votes already,

and capturing any of the two tied voters (1 and 3) would suffice for j to win the election,

whereas candidate i has to get the votes from both voters 1 and 3 to win the election. In

such situations, the tie-breaking rule T awards the election to j. This tie-breaking rule has

the following convenient property.

Lemma 3.11. The payoff function π̃ induced by rule T satisfies condition (1) of Proposition

2.12.

Proof. We can partition D(xi) into a finite number of subsets, each indexed by a triple

(L0, L1, L2) where, as above, candidate i gets the votes of Li and there are ties in L0. These

sets are further decomposed by whether (T1) or (T2) applies, which proves (1a). To prove

property (1b), fix a closed subset AL of one of the elements of this partition with index

(L0, L1, L2). Then there exists ε > 0 such that for each xj ∈ AL, |uk(xi)−uk(xj)| > ε for all

k /∈ L0. Choose a ball V around xi such that |uk(xi)−uk(yi)| < ε for all yi ∈ V . Then π̃(yi, ·)
is constant on AL for an open and dense subset of V , i.e. those yi’s for which uk(xi) 6= uk(yi)

for all k ∈ L0, which verifies condition (1b). �

Now we prove the main existence theorem for weighted-majority games.

Theorem 3.12. The game G(π̃) has an equilibrium and its value is the same as the value

of G(π′) for all π′ ∈ Π.

Proof. We check that π̃ satisfies payoff approachability for an arbitrary profile (xi, σj) and

then apply Theorem 2.9.

By the above lemma and Proposition 2.12, we can assume that σj has finite support, say

x1
j , . . . , x

n
j . Choose ε̄ > 0 such that for all xlj in the support of σj, and each k, |uk(xi) −

uk(x
l
j)| > ε̄ if uk(xi) 6= uk(x

l
j). Fix a neighborhood V (xi) of xi such that |uk(xi)−uk(x′i)| < ε̄

for all x′i ∈ V (xi). By our choice of ε̄, V (xi) is one of the neighborhoods that could be used

in defining the tie-breaking rule. (In particular, for each k there are no ties between yki and

the xlj’s and the former is a point of continuity against σj.) We show that there exists some

k such that π̃i(y
k
i , σj) > π̃i(xi, σj), which proves payoff approachability.

For each k ∈ K∗(xi), π̃i(yki , xj) = π̃i(xi, xj) = 1 if (T1) resolves the tie between xi and xj

in favor of i, and π̃i(y
k
i , xj) > −1 = π̃i(xi, xj) if (T1) resolves the ties in favor of j. Therefore,

20We could also use fair coin tosses for each tied voter.
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if (T1) applies to every xlj then we are done. Otherwise, let X̂j be the set of xj such that

(T2) applies to (xi, xj) and let σ̂j be the conditional distribution over X̂j. We now show

that there exists k such that π̃i(y
k
i , σ̂j) > 0 = π̃i(xi, σ̂j), which finishes the proof.

If K(xi) is nonempty then π̃i(y
k
i , xj) = 1 for each k ∈ K(x) and each xj in X̂j: indeed

this is obviously true if Li(xi, xj) = ∅ since yki would win each of the ties in L0; if Li(xi, xj)

is nonempty, this is true since otherwise (T1) applies. Therefore, we are done in this case.

Suppose K(xi) is empty. Consider the policy yi ≡ yk
∗
i , where k∗ minimizes wk over K∗(xi).

If k∗ /∈ L∗i (xi, xj) for some xj in X̂j, then obviously π̃i(yi, xj) = +1; if k∗ ∈ L∗i (xi, xj) and

L∗i (xi, xj) has at least two voters, then too π̃i(yi, xj) = +1, since (T1) would apply otherwise.

Thus among the policies in X̂j, yi beats every xlj except, possibly, the subset Âj of those xj’s

in X̂j for which L∗i (xi, xj) is just the singleton k∗. If the probability of this subset under σ̂j

is no more than half, then π̃i(yi, σ̂j) > 0 and we are done.

Finally, suppose that the probability of Âj under σ̂j is greater than half. Observe that

K∗(xi) contains some other voter, say k̃, since we have assumed that K(xi) is empty. As

we argued above, for any k ∈ K∗(xi), yki beats any xj that xi beats under (T1) and does at

least as well when xi loses because of (T1). On the set X̂j we now have that yk̃i beats every

policy in Âj, which has a probability at least half, and thus it gets a weakly higher payoff

against σ̂j than xi, which completes the proof. �

Remark 3.13.

(1) Suppose Xi includes policies that are not Pareto optimal in Xi. Let X∗i be the set

of Pareto optimal policies in Xi. If our assumptions hold on the sets X∗i then our

results apply to obtain existence of a value over X∗1 ×X∗2 . We could specify payoffs

at ties involving non-optimal points to extend this to an equilibrium over the bigger

strategy space. But even simpler, the game over X inherits the value from the game

over X∗: for each ε, our perturbation technique yields for each player i an ε-optimal

strategy σεi that assigns zero probability to each indifference curve of any voter—

indeed, this follows if we use for the restricted strategy sets, the sets identified by the

proof of Lemma 2.4 which have the property that each element of these sets assigns

zero probability to cross-sections. The same strategy is ε-optimal in X.

(2) A key feature of the tie-breaking rule T is (T1). When it is invoked to resolve

a tie between xi and xj, it ensures that each player can achieve the payoff from

the tie by all choices of the form yki . Indeed, if it is resolved in i’s favor, it is

guaranteed by Assumption 3.5. On the other hand, if it is resolved against i, then



22 PAULO BARELLI, SRIHARI GOVINDAN, AND ROBERT WILSON

it is obvious. The assumption that there are no draws (Assumption 3.3) means that

πi(y
k
i , xj) 6= 0. But complications can arise if we allow this possibility. For simplicity

suppose L∗i (x) = L∗j(x) = L0(x) and this set contains two voters with unequal weights.

It could be that πi(y
l∗i (x)
i , xj) = 0 for i but πi(y

k
i , xj) = −1 for the other voter k in

L∗i (x). Thus, if we set πi(xi, xj) > −1, the strategy yki cannot guarantee this payoff.

On the other hand if πi(xi, xj) = −1, then j cannot guarantee payoff +1 with the

strategy ykj . The problem here is the combination of the possibility that the game

could end in a draw (each candidate gets half of the votes) with the fact that it is a

weighted-majority game.

3.6. Simple-Majority Games. For the case of simple-majority games we specify a slightly

different tie-breaking rule that implies the same result even if the number of voters is even.

We use the notation from the previous subsection, except that each wk = 1/K.

Obviously, Assumption 3.3 cannot hold when the number of voters is even, so it is dropped.

Assumption 3.4 on diversity of preferences remains the same. Assumption 3.5 relating strat-

egy sets has to be changed. In the following assumption and definition, we retain the notation

from the previous subsection.

Assumption 3.14 (Relationship Between Candidates’ Strategy Sets—The Simple-Majority

Version). Fix x = (xi, xj) ∈ D.

(1) If Li(x) is nonempty then |L0(x)| > 2.

(2) If L∗i (x) is nonempty and |L0(x)| > 2 then:

(a) If πi(y
k
i , xj) = 0 for some k ∈ L∗i (x), then for all k ∈ K∗(xj), πj(ykj , xi) ∈ { 0, 1 }

and in fact equals +1 if |L0(x)| > 3.

(b) If πi(y
k
i , xj) = −1 for some k ∈ L∗i (x), then for all k ∈ K∗(xj), πj(ykj , xi) = +1.21

Example 3.15.

1. In the setting of Example 3.6, set the weights to wk = 1/4 for every k. Condition (1) of

Assumption 3.14 holds because Li(x) is nonempty iff xi = xj and then |L0(x)| = K > 3.

Condition (2)(a) is illustrated by the policy pair (xi, xj) described in Example 3.6: in fact

πi(y
k
i , xj) = 0 for k = 1, 3, as y1

i (resp. y3
i ) wins voter 3 (resp. 1) and loses voter 1 (resp.

3), so each such policy gets 2/4 votes against xj. So we must show that πj(y
k
j , xi) > 0 for

k = 1, 3, 4. And this is true, as it is equal to zero for k = 1, 3 (both y1
j and y3

j win one and

lose one of the tied voters, so each gets 2/4 votes against xi) and it is equal to +1 for k = 4,

as y4
j wins both tied voters 1 and 3 and retains voter 4, so j gets 3/4 votes against xi.

21Observe that if πi(y
k
i , xj) = 0 (resp. πi(y

k
i , xj) = −1) for some k ∈ L∗i (x), then πi(y

k
i , xj) = 0 (resp.

πi(y
k
i , xj) = −1) for all k ∈ L∗i (x).
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2. To illustrate the second part of condition (2)(a), modify Example 3.6 by adding two

voters and two dimensions, K = 6, N = 5, continuing with Euclidean preferences having

ideal points a1 = (1, 0, 0, 0, 0), a2 = (0, 1, 0, 0, 0), a3 = (0, 0, 0, 0, 0), a4 = (0, 0, 1, 0, 0),

a5 = (0, 0, 0, 1, 0) and a6 = (0, 0, 1, 0, 1). Again the strategy sets are the Pareto set, the

convex hull of the ideal policies. For simple majority rule, the weights are wk = 1/6 for

every k. Consider xi = (1/4, 1/4, 0, 0, 0) and xj = (1/4, 0, 1/4, 0, 0). Now L0(x) = {1, 3, 5},
Li(x) = {2} and Lj(x) = {4, 6}. We have πi(y

k
i , xj) = 0 for k ∈ {1, 3} = L∗i (x), as y1

i (resp.

y3
i ) wins voters 3 and 5 (resp. 1 and 5) and loses voter 1 (resp. 3), totaling 3/6 votes from

voters 2, 3 and 5 (resp. 1, 2 and 5). We must show that πj(y
k
j , xi) = +1 for k = 1, 3, 4, and

this follows because ykj for k = 1, 3, 4, wins at least two of the tied voters and retains voters

4 and 6 (relative to xi), so j gets at least 4/6 votes.

3. To illustrate condition (2)(b) of Assumption 3.14, again modify Example 3.6, but now

add only one voter and one dimension (K = 5, N = 4), with ideal policies a1 = (1, 0, 0, 0),

a2 = (0, 1, 0, 0), a3 = (0, 0, 0, 0), a4 = (0, 0, 1, 0), and a5 = (0, 0, 1, 1), and wk = 1/5 for

all k. For the pair xi = (1/4, 1/4, 0, 0) and xj = (1/4, 0, 1/4, 0), we have L0(x) = {1, 3},
Li(x) = {2}, and Lj(x) = {4, 5}. Now πi(y

k
i , xj) = −1 for k = 1, 2, for the same reason as

above, as xj retains voters 4 and 5 and wins one more voter (voter 1 for k = 1 and voter 3

for k = 3), so it gets 3/5 votes relative to yki . So we have to verify that πj(y
k
j , xi) = +1 for

k = 1, 3, 4. This follows, as ykj for k = 1, 3, 4 wins at least one voter, plus voters 4 and 5 that

are already won (relative to xi).

Again, the tie-breaking rule is specified in terms of the implied payoff function π̃ ∈ Π.

Definition 3.16 (Modified Tie-Breaking Rule T S). Suppose x ∈ D.

(T1) For each i, let V (xi) be as in Assumption 3.14. Suppose for some i, L∗i (x) is nonempty

and L0(x) has at least two voters. For this i:

(a) If π̃i(y
k
i , xj) = 0 for some k ∈ L∗i (x), then π̃i(xi, xj) is zero if |L0(x)| = 2 and −1

if |L0(x)| > 3.

(b) If π̃i(y
k
i , xj) = −1 for some k ∈ L∗i (x), then π̃i(xi, xj) = −1.

(T2) Suppose L∗i (x) is empty for each i or L0(x) = { k } for some k. If
∑

k′∈Lj(x) wk′ = 1/2,

then π̃i(xi, xj) = −1/2.

(T3) In all other cases, π̃i(xi, xj) = 0 for each i.22

The rule T S differs from the rule T used in the previous subsection only in that provisions

(T1)(a) and (T2) are added—and the condition that L∗i (x) has at least two voters if Li(x) is

22Again, we could use fair coin tosses for each tied voter.
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empty, when invoking (T1), is relaxed—to accommodate the fact that with an even number

of voters the game could end in a draw. Without these changes, T S is the same as T .

From Example 3.15(3) we see that provision (T1)(b) is analogous to provision (T1) of

tie-breaking rule T : candidate j is in a very advantageous situation when π̃i(y
k
i , xj) = −1

for all k ∈ L∗i (x), as winning a single one of the tied voters guarantees a victory, whereas

candidate i has to win all of the tied voters. In such a situation, T S awards the election to

j. Provision (T1)(a) handles draws: from Example 3.15(1), we see that πi(y
k
i , xj) = 0 and

|L0(x)| = 2 for all k ∈ L∗i (x) is a symmetric situation, so the rule T S declares it a draw; from

Example 3.15(2) we see that candidate j is in an advantageous situation when πi(y
k
i , xj) = 0

and |L0(x)| > 3 for all k ∈ L∗i (x), as j has the upper hand in the non-tied battles, so T S

awards the election to j.

Example 3.17. Return to the setting of Example 3.15(1). Consider the pair (xi, xj) with

xi = (0, 0, 0) and xj in the intersection of 1’s indifference surface and the face spanned by vot-

ers 1, 2 and 4, in such a way that voter 4 prefers xj to xi (for instance, xj = (3−
√

5
4
, 1

2
,
√

5−1
4

)).

Then L0(x) = {1} and Lj(x) = {2, 4}, so the premise of condition (T2) of the rule T S ap-

plies, and the rule then says that π̃i(xi, xj) = −1/2. We see that candidate j is in a stronger

position because he has already secured 2/4 votes. But y1
j loses voter 1, so it fails to beat

xi. The relatively stronger position of candidate j is then captured by awarding the election

to him with probability 3/4 rather than 1/2.

The payoff function π̃ induced by the tie-breaking rule T S satisfies payoff approachability.

As in the proof of Theorem 3.12, one shows that the payoff function satisfies condition 1 of

Proposition 2.12 and then it is sufficient to show that payoff approachability is satisfied at

each (xi, σj) where σj has finite support in D(xi). This property is verified by Lemma B.1

in Appendix B, which then proves the existence theorem for simple-majority games.

Theorem 3.18. The game G(π̃) has an equilibrium and its value is the value of every variant

G(π′) with π′ ∈ Π.

3.7. The Case of “Many” Voters. When the set of voters is finite and small relative

to the dimension of the policy space (i.e., K ≤ N + 1), the conditions in the preceding

subsections are typically satisfied in the space of preferences. Here we consider the other

extreme: we show that when there are a continuum of voters, the Downsian model has a

value for typical preferences of the voters.

Assumption 3.19. The policy space P is a ball in RN . The space of voters K is a compact

and connected metric space. The distribution of voters is given by a probability measure λ
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with the property that there exists a constant η > 0 such that for each δ > 0 and each δ-ball

Bδ, λ(Bδ) > ηδ.23

Let u : P ×K → R be the description of the preferences of the voters, i.e., u(p, k) is the

utility to voter k from the policy p. For simplicity we consider strictly quasi-concave utilities.

Later, we indicate how the proofs are to be modified for the case of linear preferences.

Assumption 3.20. The utility function u(p, k) is jointly continuous in (p, k). For each k,

u(·, k) is a differentiable, strictly quasiconcave function in a closed and convex neighborhood

Q of P . For each p, ∇pu(p, k) is continuous in k. For each p 6= q, λ({ k ∈ K | u(p, k) =

u(q, k) }) = 0

Remark 3.21. A canonical example of our set up can be described as follows. The policy

space is the ball in RN and voters have Euclidean preferences. Identifying voters by their

ideal points, the voter space is either the ball itself or its boundary. Finally, the distribution

λ has a strictly positive density.

Define f : P × P → [0, 1] by f(p, q) = λ({ k ∈ K | u(p, k) > u(q, k) }) if p 6= q and equals

1/2 otherwise.

Assumption 3.22. f is differentiable at all (p, q) with p 6= q and f(p, q) = 1/2.

Remark 3.23. In the case of the Euclidean preferences, the differentiability derives from λ

having a strictly positive density.

Since we have assumed that the utilities are defined in some convex neighborhood Q of P

as well, and that the preferences continue to be stritly quasi-concave over Q, the function

f extends to a map over Q as well. Given p ∈ P and a vector r in the unit sphere in RN ,

we denote by L(p, r) the set of all points of the form p + tr ∈ Q for t ∈ R. Given a line

segment L in Q through a point p, we say that p is a median point on L if f(p, q) > 1/2 for

all q ∈ L \ { p }. It is a unique median point if the inequalities are strict for all q. Median

points can be computed as follows. For each line L(p, r) and t such that p + tr ∈ Q, define

g(t, p, r) to be the measure of the set of voters whose ideal points on L(p, r) lie at points

p+ t′r for t′ 6 t. Then p is a median point of p+ tr iff g(0, p, r) = 1/2.

Remark 3.24. In the example of Euclidean preferences, median points can be described

geometrically as follows. Given a line L(p, r) Let HL(p,r) be the hyperplane with normal r

and intersecting the line at p. Then p is a median point on L(p, r) iff the measure of voters

23When K is a subset of a Euclidean space, this last assumption holds if λ has a strictly positive density
w.r.t. the Lebesgue measure.



26 PAULO BARELLI, SRIHARI GOVINDAN, AND ROBERT WILSON

on both half spaces is exactly one half. Moreover, median points are unique, since λ has a

positive density.

Assumption 3.25. For each p ∈ P and unit vector r, g(·, p, r) is continuous and strictly

increasing in t whenever g(t, p, r) ∈ (0, 1). Moreover for a.e. r, g(0, p, r) 6= 1/2, i.e., p is not

a median point on L(p, r); if p ∈ ∂P , then this is also true for a.e. r in the tangent space to

P at p.

Remark 3.26. Assumption 3.25 is a regularity assumption. Going back to the Euclidean

case, since λ assigns zero measure to hyperplanes and has a strictly positive density, the

monotoncity assumption is satisfied. Also, for the same reasons, for each r there is a unique

p(r) such that such that g(0, p(r), r) = 1/2. Moreover this is a differentiable function of r.

For p not to be a median for a.e. r is to say that the derivative of p(r) w.r.t. r is not zero.

This last point is implied by a regularity argument since the map p(r) sends the unit sphere

in RN−1 to P , which is N -dimensional.

For simplicity, we consider a symmetric game. Thus, the strategy sets are X1 = X2 = P .

Let D0 be the diagonal of X, i.e., D0 = (p, p) ∈ X. We define the payoffs as follows. For

each pair (x1, x2), π1(x) = 1 (resp. −1) if f(x) is greater than 1/2 (resp. smaller than 1/2).

It is zero if f(x) = 1/2. That is, the tie-breaking rule used is the one that assigns zero

payoff to every tie.24 For each xi, D(xi) is the set of xj such that f(xi, xj) = 1/2 along with

the point xj = xi. Let G(π;λ) denote the normal form game with payoff π and underlying

distribution λ on K.

We have a preliminary lemma about the behavior of the function f .

Lemma 3.27. For x1 6= x2, if f(x1, x2) = 1/2, then ∇x1f(x1, x2) · (x2 − x1) > 0.

Proof. Fix x1 6= x2 and let α : K → R be the function given by α(k) = u(x1, k) − u(x2, k).

Let K0 = α−1(0). We claim first that K0 is nonempty. Indeed, as α is continuous in k, the

connectedness of K implies that its image under α is connected. Therefore, if K0 is empty,

then the image of K under is contained either in R+ or R−, i.e., f(x1, x2) is either 0 or 1.

Thus, K0 is nonempty.

For each k ∈ K0, strict quasiconcavity of u(·, k) in a neighborhood of x1 inQ and u(x1, k) =

u(x2, k) imply ∇x1u(x1, k) · (x2 − x1) > 0. Moreover, the ideal point of an k ∈ K0 along the

line x1 +t(x2−x1) is at some t∗(k) > 0. By continuity of ∇x1u(x1, k) in k and compactness of

K0, there exist c > 0, t∗ > 0 and a neighborhood V0 ofK0 such that∇x1u(x1, k)·(x2−x1) > 2c

and t(k) > t∗ for all k ∈ V0. Observe now that for each k ∈ V0, g(t, k) ≡ u(x1 + t(x2 −
24This is the tie-breaking rule employed by Duggan [10].
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x1), k) − u(x1, k) > ct for all 0 < t 6 t∗: Indeed, for each k ∈ V0, there exists some t̄ such

that g(t, k) > ct for all 0 < t < t̄; the fact that the ideal point of k occurs for t > t∗ implies

that this inequality for all t̄ 6 t 6 t∗.

By continuity of α in k, there is a > 0 with α−1([−a, a]) contained in V0, and a Lipschitz

constant ζ. Observe that for k ∈ V0 and t 6 t∗, if α(k) > −ct then k strictly prefers

x1(t) ≡ x1 + t(x2−x1) to x2. Now consider x1(t) for t < 2a/c, so that there is k(t) ∈ V0 with

α(k(t)) = −ct/2. We have: (i) every k ∈ α−1([0,∞)) prefers x1(t) to x2; (ii) every k in the

ct/2ζ-ball around k(t) ∈ V0 with α(k(t)) = −ct/2 prefers x1(t) to x2, provided that the ball

is contained in V0, which is true for t small enough. The measure of the first set is exactly

1/2 since f(x1, x2) = 1/2. The measure of the second set is at least ctη/2ζ, by Assumption

3.19. Therefore, f(x1(t), x2) > 1/2 + ctη/2ζ, establishing that the directional derivative of

f at (x1, x2) is at least cη/2ζ > 0. �

Lemma 3.28. Under Assumptions 3.19 and 3.20, the game G(π;λ) is mildly discontinuous.

Proof. It is sufficient to show that for each x2, the set of x1 6= x2 such that f(x1, x2) = 1/2 is

a lower-dimensional subset of P : then since ties occur only when f(x1, x2) = 1/2, the result

follows from Lemma 2.4. For each x2, 1/2 is a regular value of f(·, x2) for each x2, by the

previous lemma. Hence, the set of x1 that ties with x2 is a manifold of dimension N −1. �

We now verify that G(π;λ) satisfies payoff approachability, and therefore has a value that

is independent of the tie-breaking rule.

Theorem 3.29. The game G(π, λ) has an equilibrium and its value is the same as the value

of G(π′, λ) for all π′ ∈ Π.

Proof. As the game is symmetric, it suffices to show that π1 satisfies payoff approacha-

bility. Let (x1, σ2) be a strategy profile such that σ2(D(x1)) = 1. We will show that

supxn1→x1 lim supn π1(xn1 , σ2) > 0 for all sequences {xn1 } of points of continuity of σ2, which,

in light of Lemma 2.5, shows that π1 satisfies payoff approachability. (Recall that every

stragegy σ2 is the average of two strategies σc2 and σd2 where x1 is continuous against σc2 and

σd2(D(x1)) = 1.) We break up the proof into cases.

Case 1. Suppose x1 /∈ ∂P . For each ε, let Uε be the ε-ball around x1 and let σε1 be the

uniform distribution over Uε. It is sufficient to prove that limε→0 π1(σε1, σ2) > 0. To prove

this, it is sufficient to show that for each x2 ∈ D(x1), limε→0 π1(σε1, x2) > 0. Therefore, fix

x2 ∈ D(x1). For each ε, σε1 can be decomposed as follows. For each line segment L = L(x1, r)

through x1, let µεL be the uniform distribution over the intersection of the line segment L

with Uε, and let ν be the uniform distribution over line segments. Then σε1 can be expressed
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as dσε1(y1) = dν(L)dµεL where L = L(x1, r(y1)) is the line segment through x1 containing y1.

To prove that limε→0 π1(σε1, x2) = 0, it is sufficient to show that for a.e. L, π1(µεL, x2) = 0.

This point follows if a.e. L, f(·) is strictly greater than 1/2 on one side of x1 on the line

L∩ (Uε \ {x1}) and strictly less than 1/2 on the other side, for all small ε. In particular, if f

is differentiable at x w.r.t. x1, this monotonicity property is implied by a non-zero derivative

of f w.r.t. x1 along L.

Case 1a. Suppose x2 6= x1. As we just indicated, we have to show that ∇x1f(x) 6= 0. But

this follows from Lemma 3.27, as the directional derivative in the direction of (x2 − x1, 0) is

positive.

Case 1b. Suppose x2 = x1. Then, for a.e. r, g(0, x1, r) 6= 1/2. If g(0, x1, r) is smaller than

1/2, then x1 beats x1 + tr for t < 0 while for all small t > 0, x1 + tr beats x1. Likewise, if

g(0, x1, r) is greater than 1/2, then x1 beats x1 + tr for t > 0 and is beaten by x1 + tr for

all small t < 0. Again, this means that along the lines L(x1, r) generated by a.e. r we have

π1(µεL, x2) = 0 for small enough ε.

Case 2. Suppose now that x1 ∈ ∂P . Without loss of generality we can assume that x1

is the origin of RN , that the tangent space T to P at x1 is the half space where the N -th

coordinate is zero, and P lies in the half space where the last cordinate is non-negative. Let

R be the unit sphere in T . For each r ∈ R and ε, let rε be the vector (
√

(1 + ε2)(r, ε) in

the unit sphere in RN . There exists ε0 > 0 such that for each r ∈ R and each 0 < ε 6 ε0,

there is a unique t∗(rε) > 0 such that x1 + trε belongs to P for all 0 6 t 6 t∗(rε) with x1

and x1 + t∗(rε)rε being the only boundary points on the line. For each 0 < ε < ε0, let Rε

be the set of vectors x1 + t∗(rε)rε and let σε1 be the uniform distrition over the vectors rε′

for 0 6 ε′ 6 ε defined by taking a uniform distribution ν over lines in Rε and a uniform

distribution µε over [0, ε], i.e., dσε1(rε′) = dν(L)µε(ε
′) where L is the line containing r. As

in Case 1, we will show that for each x2 in the support of σ2, π1(σε1, x2) > 0 for all small ε.

To do this, it is suffficient to show that for generic lines L in Rε, the uniform distribuion µεL

over the set L̂ε consisting of rε′ with r ∈ L and 0 < ε′ < ε does at least as well as x1 against

x2 for all small ε.

Case 2a. Suppose x2 6= x1, as in Case 1, the directional derivative towards x2 − x1 is non-

zero. If the tangent space T ′ in X1 generated by ∇x1f(x) is T then since x2 belongs to P , all

points close to x1 beat x2 and in particular, for all small ε, points in L̂ε \ x1 beat x2. Hence

π1(µεL, x2) = 1 in this case. If the tangent space is transverse to RN−1, then as long as as L

does not belong to the tangent space given by ∇x1f(x) (which would be true for generic L),

then for each small ε > 0 rε belongs to one side of T ′ iff (−r)ε (the vector generated by −r)
lies on the other side. Thus, Hence, for small ε, π1(µεL, x2) = 0.
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Case 2b. Suppose x1 = x2. Then for a.e. lines L(x1, r) for r ∈ T , g(0, 0, r) 6= 1/2. If it is

greater than 1/2, by continuity of g in r, g(0, 0, rε) > 1/2 for all small ε, i.e., rε beats x2 for

all such ε. Since either g(0, 0, r) or g(0, 0,−r) is greater than 1/2 for each r, for all small ε,

rε either beats x2 or (−r)ε does. Thus, π1(µεL, x2) > 0. �

Remark 3.30. We now sketch the argument in the case where the utilities of the voters

are all linear. Each voter has a unique ideal point in P , which is on the boundary, and we

parametrize voters by their ideal points. We assume that the measure λ has a strictly positive

density on ∂P ≡ K. Assumption 3.20 holds because λ has a positive density. Assumption

3.22 is seen to hold as is the condition that some voter is indifferent between p and q. Since

for any line L, voters have extreme preferences (preferring one or the other extreme point),

the median point is unique unless equal measures of voters prefer one to the other. Typically

we have Assumption 3.25 holding as well. (Note: it does not hold if the distribution λ is

uniform over the ball!) Lemma 3.27 is not true anymore. But, it can be shown that the

partial derivative of f w.r.t. either variable is non-zero since along generic lines through, say,

x1, the ideal points are extreme. Since the proof of the result only requires that the partials

of f do not vanish, it goes through in the linear case.

3.8. An Asymptotic Result. The existence result of the previous section can be used to

prove the existence of ε-optimal strategies for games with a large but finite number of voters.

This follows from a continuity result: if a game satisfies the assumptions of that section, then

for each ε > 0, all games with all distributions “close” to λ have an ε-equilbirium.

We use the topology of weak-∗ convergence on the space of distributions over K, which is

metrizable because K is so. In the following theorem a basic game G(π;λ) is fixed satisfying

Assumptions 3.19, 3.20, 3.22, and 3.25. For each distribution λ′ over K, G(π;λ′) is the game

that differs from G(π;λ) only in that the distribution λ is replaced with λ′.

Theorem 3.31. For each ε > 0 there exists δ > 0 and σ such that for all λ′ within δ of λ,

σ is an ε-equilibrium of G(π;λ′).

Proof. Fix ε > 0. Each player i has a strategy σi that is ε/4-optimal in G(π;λ) and assigns

zero probability to each xi. In fact, for each integer m, let Um be the 1/m ball around

xi. Cover Xi with such balls and extract a finite subcover {Uh
m} Let µhm be the uniform

distribution over Uh
m. Define a game Gm for each m as follows. The strategy set of player j

is Σj, and the strategy set of player i is the space Σm
i of convex combinations of µhm’s. The

payoff function is the restriction of π to Σm
i ×Σj. Such payoffs are continuous and bilinear,

so Gm has an equilibrium σm and its value vm is equal to 0. Proceeding as in Lemma A.2,

we conclude that for large m, πi(σ
m
i , xj) > −ε/4, for all xj ∈ Xj, verifying the claim. Let
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σ1 denote the σm1 satisfying π1(σ1, x2) > −ε/4 for all x2 ∈ X2. We now show that there is

δ > 0 such that σ1 is an ε-optimal strategy for the game G(π;λ′) when λ′ is δ-close to λ.

The argument is similar for player 2.

For each γ > 0, f−1([1/2, 1/2 + γ])∪D0 is a closed set. Therefore, there exists γ > 0 such

that for each x2, σ1({x1 | x1 = x2 or (x1, x2) ∈ f−1([1/2, 1/2 + γ]) < ε/8. Therefore, for any

x2, the probability that 1 wins at least 1/2 + γ share of the votes is at least (1/2)(1− ε/4−
2(ε/8)) = 1/2− ε/4.

Since σ1(x1) = 0 for each x1 ∈ X1, we can find an open neighborhood U0 of the diagonal

D0 such that for each x2, σ1({x1 | (x1, x2) ∈ U0}) < ε/4. From Assumption 3.20, for each

(x1, x2) ∈ X \ U0, λ({k | u(x1, k) = u(x2, k)}) = 0. Therefore, we can find α > 0 small

enough such that the λ({k | |u(x1, k)− u(x2, k)| 6 α}) < γ/2.

We now have that, for each x2 ∈ X2, the probability under σ1 is at least 1/2 − ε/2 that:

(1) (x1, x2) /∈ U0; (2) λ(Kα) > 1/2 + γ/2 for Kα = {k | u(x1, k)− u(x2, k) > α}.
Since u(x1, k) − u(x2, k) is continuous on the compact (X \ U0) × K, it has a Lipschitz

constant η. Let δ = min(α/η, γ/2). Consider a distribution λ′ within δ of λ. For each (x1, x2)

satisfying conditions (1) and (2) above, the δ neighborhood Kδ
α of the set Kα is contained in

the set of voters who strictly prefer x1 to x2; as λ′(Kδ
α) > λ(Kα) − δ > 1/2, x1 would beat

x2 in the game λ′ in this event. Under σ1, the probability of this event is at least 1/2− ε/2,

so σ1 guarantees a payoff of at least 1/2− ε/2− (1/2 + ε/2) = −ε against every strategy of

player 2. �

Now, a large finite game can be represented as a game G(π;λ′) with λ′ with finite support.

If in addition λ′ is δ-close to λ, the finite game has an ε-equilibrium. Alternatively, consider a

sequence of elections with increasing number of voters. If the limiting distribution λ of voters

satisfies the conditions set forth above, then for any ε > 0 there is a large enough electorate

such that the corresponding game has an ε-equilibrium. If the limiting distribution λ does

not satisfy the conditions above, then there is a distribution λ′ closeby that does satisfy the

conditions. Moreover, such λ′ will be the limiting distribution of a sequence of elections that

is close to the original sequence of elections. So, again, for each ε > 0 there is a large enough

electorate taken from the perturbed sequence of elections, such that the corresponding game

has an ε-equilibrium. In all, a game with a large enough electorate can be approximated by

a game with a continuum of players which has an equilibrium.

4. Majority Games of Resource Allocation

This section addresses a special case of the formulation and results in Sections 2 and

3. The two players compete for votes in several constituencies, called battlegrounds. The
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winner of the game is again the player who wins more votes. The key feature now is that

a player wins a battle if he allocates more of his available resources to that battle than his

opponent does. Thus the game is a majority-rule version of a Colonel Blotto game.25

4.1. Formulation. The game G is a weighted-majority game specified as follows. Each

player i has an amount Ri of a resource that he allocates among the battles. Assume

that R1 > R2 > 0 and that the number of battles is an integer K > 2. A pure strategy

xi = (xi,k)k=1,...,K for player i allocates a nonnegative amount xi,k of his resource to battle

k. Thus his set of pure strategies is Xi ≡ {xi ∈ RK
+ |

∑K
k=1 xi,k = Ri }. For each profile

x ≡ (x1, x2) ∈ X1 × X2 ≡ X of pure strategies for the two players, player i wins battle k,

and the other player j loses, if xi,k > xj,k. If xi,k = xj,k then a tie-breaking rule determines

the winner of battle k.

For each battle k, the winner of the battle obtains wk votes, where 0 < wk < 1/2 and∑
k wk = 1. We assume that

∑
k∈Lwk 6= 1/2 for each subset L of K, except when we consider

simple-majority games.26 Player i wins the game and gets payoff +1 if
∑

k∈Wi
wk > 1/2,

where Wi is the set of battles he wins; similarly, he loses and gets payoff −1 if
∑

k∈Wi
wk <

1/2. The players’ payoffs are both zero if both win 1/2 votes. Thus, if there are no tied

battles or the resolutions of ties are inconsequential, then a player’s payoff is either +1 if

he wins a weighted majority of votes, or −1 if he loses. If resolutions of tied battles affect

the outcome of the game then his expected payoff is some number in the interval [−1,+1].

Either way, player i’s payoff function is πi : X → [−1,+1], and π1(x) + π2(x) = 0 for every

profile x ∈ X.

Before proceeding, we note that our results, except those in Section 4.2 for simple-majority

games, go through if we use a plurality rule, so that player i’s payoff is
∑

k∈Wi
wk. This makes

the game a constant-sum game that is strategically equivalent to a zero-sum game. In fact

the proofs are simpler since then we can work with the standard tie-breaking rule in which the

winner of each tied battle is chosen by the toss of a fair coin. For more general non-constant-

sum games our basic existence theorem—which shows the existence of an equilibrium for the

25Duggan [11] proves existence of an equilibrium of this game for the case of simple-majority rule and
symmetric resources. The other literature on Colonel Blotto games assumes that each player maximizes the
number of battles won, rather than winning a majority. This case is sometimes interpreted as relevant to
plurality and majority rule but the connection is not exact when the number of battles exceeds three; see
Laslier [17, 18] and Laslier and Picard [19] for other comparisons. A referee informs us that the first solution
to the game with three battles and symmetric resources appears in Borel and Ville [6]. This literature
culminates in the article by Roberson [24], who provides a complete analysis of such games, and in Hart [14]
for the case that resources are allocated in discrete amounts.

26This assumption is not needed if we consider the case where one player wins all ties.
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game G(π̃) when it satisfies payoff approachability—goes through; such games are studied

by Kvasov [16], Kvasov and Roberson [25], Roberson [24], and Thomas [28].

This model is a special case of those in Section 3. The policy space P is the union of X1

and X2. Each battle represents a voter whose utility function is uk(xi) = xi,k.
27

The following theorem extends a result obtained by Duggan [11], who proves existence

of an equilibrium for simple-majority rule with symmetric resources and the standard tie-

breaking rule.

Theorem 4.1. If the tie-breaking rule is T (or T S in the case of simple majority) then the

game has an equilibrium that yields the value, and any other tie-breaking rule yields the

same value.

Proof. We verify the assumptions stated in Sections 3.5 and 3.6 and apply Theorems 3.12

and 3.18, respectively. Assumption 3.3 is stated in the formulation. To check the other

assumptions, remark first that K∗(xi) is the set of battles whose coordinates are positive.

In particular, K(xi) is a singleton for a vertex (the voter corresponding to the battle getting

all the resources) and empty elsewhere. With this feature, Assumption 3.4 is easily verified.

In fact, for each coordinate that is positive, we can reduce it by an arbitrarily small amount

and assign a strictly higher amount to all other battles.

Regarding Assumption 3.5, suppose xi is tied with xj, L
∗
i (x) is nonempty, with |L∗i (x)| > 2

if xi is not a vertex, and y
l∗i (x)
i loses to xj. Since L∗i (x) is nonempty, if xi is a vertex then it

must be that L0(x) contains this one non-zero coordinate of player i. Moreover, i = 2 and

R2 < R1: indeed as j must assign Ri to this battle as well, Rj > Ri, but if Rj = Ri, then

xi = xj and y
l∗i (x)
i would beat xj. Since Rj > Ri, xj is not a vertex, i.e. K∗(xj) has at least

two nonzero coordinates. As a result, each ykj beats xi on all coordinates except possibly for

the one corresponding to the vertex, and thus it wins the game (recall that wk < 1/2 for all

k).

If xi is not a vertex then L∗i (x) has at least two elements. When y
l∗i (x)
i loses to xj it means

that j could win the game by winning any of the battles in L∗i (x). Since L∗i (x) equals L∗j(x)

and has at least two non-zero coordinates, every ykj would accomplish this as it would reduce

at most one of the nonzero coordinates in L0(x).

Finally we check Assumption 3.14 for the simple-majority case (with even or odd number

of battles). Suppose xi is a vertex. If xi ties with xj just on the one non-zero coordinate

27Rather than viewing electoral competition as occurring in the space of proposed policies, as the strategy
space one can equivalently use the space of voters’ utility profiles generated by policies. In this framework,
Colonel Blotto games are the special case in which the strategy spaces are simplices.
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of xi, xj wins, as K > 3. Thus, condition (1) holds. As for condition (2), suppose L∗i (x) is

nonempty and |L0(x)| > 2. If π̃i(y
k
i , xj) = 0 for some k, then K is even and |Lj(x)| = K/2−1.

Each strategy yk
′
j of player j would lose battle k′ if k′ ∈ L0(x) but win every other battle

in L0(x). Thus, π̃j(y
k
j , xi) = 0 if ykj ∈ L∗(x) and |L0(x)| = 2; otherwise, it equals +1, as

required by condition (2a). If π̃i(y
k
i , xj) = −1, then |Lj(x)| is the greatest integer not more

than K/2. Each ykj can win at least one of the battles in L0(x) and thus win the war, giving

us condition (2b). �

Remark 4.2. We need something stronger than the standard rule if payoff approachability

is to hold. To see the problems with the standard rule, suppose K = 3, we have simple

majority rule, R1 > R2, i = 2, and xi allocates zero resources to the first battle and R2/2

to each of the other two. Suppose xj is the pure strategy of player j = 1 that allocates a

positive amount to the first battle and ties with player i on the other two battles. Then

using tosses of a fair coin for each of the ties gives player i a probability 1/4 of winning.

Every nearby strategy loses.

4.2. Existence of an Equilibrium With Zero Probability of Ties. The results above

can be strengthened for simple-majority games. For this class of games we use the existence

result from Section 3.4, under the tie-breaking rule T S.

Permutations of the battles induce a symmetry group, and therefore among the equilibria

there are some that inherit the symmetries of the game. We show that these equilibria have

zero probability of ties except for a single critical value of R1/R2.

Assume that wk = 1/K for all k, so that G is a simple-majority game. Thus a player

winning 1 + bK/2c battles wins the game.28 Let r∗ = K/dK/2e. Diermeier and Myerson [8]

call r∗ the hurdle factor and prove the following.

Proposition 4.3. If R1/R2 > r∗ then player 1 has a strategy that wins for sure indepen-

dently of the tie-breaking rule.

Sketch of Proof. The pure strategy of player 1 that allocates his resources uniformly across

all the battles wins the game against every strategy of player 2, and no ties occur that could

affect whether player 1 wins. �

In the most relevant case that R1/R2 is strictly below the hurdle factor, there exists an

equilibrium in which the tie-breaking rule is invoked with zero probability, as we now verify.

28bK/2c is the greatest integer not more than K/2, and dK/2e is the least integer not less than K/2.
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Because the game G uses a simple majority to decide the winner, it treats battles sym-

metrically.29 Every permutation φ : { 1, . . . , K } → { 1, . . . , K } of the battles defines a

homeomorphism of Xi with itself that sends each xi to xφi where xφi,k = xi,φ(k) for each k.

Obviously πi(xi, xj) = πi(x
φ
i , x

φ
j ) for all φ. Let Φ be the set of all permutations. Define

Hi : Xi → Σi by mapping each xi to the uniform mixture over the set {xφi }φ∈Φ. This map

extends to a function from Σi to Σi. Define Σ̃i ≡ Hi(Σi) and let Σ̃ = Σ̃1 × Σ̃2. There exists

an equilibrium σ∗ of the game G with the tie-breaking rule T S such that σ∗ ∈ Σ̃ and σ∗1 = σ∗2
if R1 = R2. To see this, apply the perturbation method in the proof of Theorem 2.9 but

now choosing the strategy sets to be symmetric with respect to the battles and perturbing

the strategies of both players simultaneously. These perturbed games have an equilibrium

that is invariant under all the symmetries of the game and hence the limit of these equilibria

as the perturbations shrink inherit the same properties. The following result, proved in the

Appendix, shows that ties occur with zero probability in equilibrium.30

Theorem 4.4. If R1/R2 < r∗ then (σ∗1 ⊗ σ∗2)(D) = 0. That is, at the equilibrium σ∗ the

probability is zero that the tie-breaking rule T S is invoked.

Remark 4.5. In the knife-edge case that R1/R2 is exactly equal to the hurdle factor r∗,

ties can occur in an equilibrium, and optimal strategies can depend on the tie-breaking rule.

The uniform strategy described in the proof of Proposition 4.3 continues to be a maximin

strategy of player 1 under rule T , or if he wins all ties then again he can assure the value

+1. But player 1 does not have a maximin strategy if the tie-breaking rule is the standard

rule that tosses a fair coin to resolve each tied battle. For simplicity, we illustrate the case

K = 3, R1 = 3/2, R2 = 1, and r∗ = 3/2. Let π be the expected payoff function induced by

the standard rule. As argued above, because of the symmetry of the battles, if player 1 has a

maximin strategy then he has one that is invariant under all permutations of the coordinates.

Thus fix a strategy σ̃1 that is invariant under the symmetries of the game. For each xi, denote

the rank order by (xi,k1 , xi,k2 , xi,k3), with xi,k1 6 xi,k2 6 xi,k3 for distinct battles k1, k2, k3.

Let σ̃1({x1 : x1,k2 6 1/2}) = α > 0. Observe that the probability of x1
2 = (1/2, 1/2, 0)

winning is bounded below by (1/6)α. Thus π1(σ̃1, x
1
2) 6 1− α + 5α/6 = 1− α/6. For each

b ∈ (1/2, 3/4], let σ̃1({x1 : b/2 + 1/4 6 x1,k2 6 b}) = β(b) > 0. Observe that we can find b

and β(b) > 0 when α = 0 and that α = 1 when β(b) = 0 for all such b. Now, because for

29This feature is also exploited by Hart [14] for the discrete case.
30Zero probability of ties does not imply irrelevance of the tie-breaking rule, since it still has a role in

deterring deviations from the equilibrium strategies. We conjecture (at least in the symmetric case where
both candidates have equal resources, but possibly also more generally except for a single critical ratio of
resources) that the game has an equilibrium that remains an equilibrium for every tie-breaking rule.
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each x1 with b/2 + 1/4 6 x1,k2 6 b, we necessarily have x1,k1 6 1− b, the probability of the

strategy xb2 = (b, 1−b, 0) winning is bounded below by (1/6)β(b). So π1(σ̃1, x
b
2) 6 1−β(b)/6.

Combining the two bounds, we must have infx2∈X2 π1(σ̃1, x2) 6 min{1 − α/6, 1 − β(b)/6}.
Theorem 4.1 above ensures that the game has a value, and the value is independent of the

tie-breaking rule. Because the value of the game with payoff function π+ is +1 (the maximin

strategy for player 1 assigns 1/2 to each battle), the value of the game with payoff function

π is +1. So a maximin strategy σ̃1 for player 1 must satisfy infx2∈X2 π1(σ̃1, x2) = +1. But

this requires that α and β(b) are zero for every b, which is impossible. So player 1 does not

have a maximin strategy, and a Nash equilibrium cannot exist. Note that this implies that

the game with payoff function π violates better-reply security even though the value exists.

5. Concluding Remarks

The absence of general theorems establishing existence of values, optimal strategies, and

equilibria of zero-sum majority games has long impeded applications to electoral competi-

tion and redistributive politics. In studies of elections, reliance on one-dimensional policy

spaces has limited the relevance to practical affairs, while for multidimensional policy spaces

the general results show only that if an equilibrium exists then its support lies within the

‘uncovered’ set (cf. Banks and Duggan [1], who assume the game is symmetric). In studies

of resource allocation in electoral campaigns and lobbying, the absence of general existence

results has impaired conclusions about effects of asymmetries in resources available to the

candidates. The technical difficulties stem from discontinuities in payoffs at ties, and there-

fore hinge on how ties are resolved.

Our two general results in Section 2 provide alternative tools. Theorem 2.6 shows that

when all ties are resolved in favor of one player then the value exists and that player has

an optimal strategy that ensures the value. This conclusion is especially useful in models of

elections, where otherwise assumptions about voters’ preferences are required. Theorem 2.9

shows that tie-breaking rules satisfying payoff approachability imply better-reply security

and therefore equilibria exist that yield the value; and importantly, any other tie-breaking

rule yields the same value, so ε-equilibria exist.

This result applies to the models of elections addressed in Section 3, where specific tie-

breaking rules and either diversity of voters’ preferences or regularity of voters’ preferences

(for large electorates) imply payoff approachability (Theorems 3.12, 3.18, and ??). And

it applies to the weighted-majority games of resource allocation addressed in Section 4,

where again a particular tie-breaking rule implies payoff approachability (Theorem 4.1), and
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further, for simple-majority games it implies existence of an equilibrium with zero probability

of ties (Theorem 4.4).

Appendix A. Omitted Proofs from Section 2

Lemma 2.2. Assumption 2.1 implies that for each mixed strategy σj of a player j the set

{xi ∈ Xi | σj(D(xi)) = 0 } is dense in Xi.

Proof. If the implication is not true, then there exists σj ∈ Σj and an open set V ⊂ Xi such

that σj(D(xi)) > 0 for all xi ∈ V . By Assumption 2.1 and because V is open, we can find

σi with σi(V ) > 0 and σi(D(xj)) = 0 for all xj ∈ Xj. But then

0 =

∫
σi(D(xj))σj(dxj) = (σi⊗σj)(D) =

∫
V

σj(D(xi))σi(dxi)+

∫
Xi\V

σj(D(xi))σi(dxi) > 0,

a contradiction that establishes that the implication must be true. �

Lemma 2.4. If Xj is a finite dimensional manifold then Assumption 2.1 holds if, for each

xi ∈ Xi, D(xi) is a set of lower dimensionality in Xj.

Proof. For each xj and each integer n, take Un as a neighborhood of xj that is diffeomorphic

to the 1/n-ball around the origin in Rm, where m is the dimension of the manifold Xj. Let

µnxj be the uniform distribution over this 1/n-ball, so that µnxj is absolutely continuous with

respect to the Lebesgue measure on Rm. Let f : Un → B1/n(0) denote the diffeomorphism,

and put ηnxj(·) = µnxj(f(·)). Since D(xi) is a lower dimensional set in Xj, the Lebesgue

measure f(D(xi)) on Rm is zero. Hence ηnxj(D(xi)) = µnxj(f(D(xi)) = 0 for every xi ∈ Xi,

so each xi is a point a continuity against ηnxj . Since each xi ∈ Xi is also a point of continuity

against convex combinations ηnxj ’s, it is also a point of continuity against every σnj in the

convex hull Σn
j of the set of { ηnxj }xj∈Xj

. Let Σ∗j be the union over n of Σn
j and note that

Σ∗j ⊂ {σj ∈ Σj | σj(D(xi)) = 0 ∀xi ∈ Xi }. Observe that for each ηj ∈ Σj with finite support

there exists a sequence {σkj } ⊂ Σ∗j with σkj → ηj. It follows that Σf
j ⊂ Cl(Σ∗j), where Σf

j is

the set of mixed strategies with finite support and Cl(·) denotes closure. As Cl(Σf
j ) = Σj,

we have Cl(Σ∗j) = Σj, and the result follows. �

Theorem 2.6. If π′ = π+ or π′ = π− then the value v∗(π′) exists. Moreover, in the game

G(π+) player 1 has a maximin strategy, and in the game G(π−) player 2 has a minimax

strategy.

Proof. We prove the theorem only for π+ since the other case is similar. By Assumption

2.1 let Σ̃2 be a dense set of strategies σ2 such that σ2(D(x1)) = 0 for all x1 ∈ X1. We can
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assume without loss of generality that Σ̃2 is a countable set: indeed, for each positive integer

k, take a covering of Σ2 by a finite number of balls of radius 1/k, pick a point in each of

these balls that belongs to Σ̃2 and then take the countable union (over k) of these finite sets.

Let Σ̃1
2 ⊂ Σ̃2

2 ⊂ · · · be an increasing sequence of subsets of Σ̃2 such that each Σ̃n
2 is a finite

set and ∪nΣ̃n
2 = Σ̃2. For each n let Σn

2 be the convex hull of Σ̃n
2 . Σn

2 is a compact convex

subset of Σ2 for each n. Also, for each n and σn2 ∈ Σn
2 , σn2 (D(x1)) = 0 for all x1 ∈ X1; in

particular, π+ is continuous at each (x1, σ
n
2 ) by Lemma 2.5.

Define a perturbed game Gn as follows. The strategy set of player 1 is Σ1 and the strategy

set of player 2 is Σn
2 . The payoff function is the restriction of π+ to Σ1×Σn

2 . The payoffs are

clearly continuous and bilinear so the game Gn has a value, say vn, and each player i has an

equilibrium strategy σni that assures this value.

Take a convergent subsequence of equilibria (σn1 , σ
n
2 ) and associated values vn converging

to, say, (σ∗1, σ
∗
2) and v∗ as n→∞. First observe that for each n, σn2 is a feasible strategy in

G(π+) for player 2 that holds player 1’s payoff down to vn. Therefore, vn > v(π+) for all n,

which implies that v∗ > v(π+). We now show that π+(σ∗1, x2) > v∗ for all x2, which implies

that v∗ 6 v(π+). Indeed, otherwise there exists some x2 such that π+(σ∗1, x2) < v∗. In this

case, we claim that we can assume without loss of generality that x2 is a point of continuity

against σ∗1. To prove this claim, start with the given x2 and first decompose σ∗1 into an average

of two strategies σc1 and σd1 where x2 is a point of continuity against σc1 and σd1(D(x2)) = 1.

By Lemma 2.5, limxk2→x2 π
+(σc1, x

k
2) = π+(σc1, x2). Moreover, π+(σd1 , x2) = 1 > π+(σd1 , x

′
2) for

all x′2. Therefore, for all x′2 sufficiently close to x2, π+(σ∗1, x
′
2) < v∗. By Lemma 2.4 we can

now choose a point x′2 close to x2 such that it is a point of continuity against σ∗1 and also

π+(σ∗1, x
′
2) < v∗. Thus, the claim is proved and we can assume that x2 itself is a point of

continuity against σ∗1.

Because π+ is continuous at (σ∗1, δx2), pick ε > 0 and a neighborhood U = U1 × U2

of (σ∗1, δx2) such that for all (τ1, τ2) ∈ U , π+(τ1, τ2) < v∗ − ε. For all large n, σn1 ∈ U1,

and because Σ̃2 is dense in Σ2, there exists N and σ2 ∈ Σ̃N
2 that belongs to U2 and thus

π+(σn, σ2) < v∗ − ε for all large n. But, as the sequence Σ̃n
2 is increasing, we have that for

all n > N , σ2 belongs to Σn
2 and thus, π+(σn, σ2) > vn, which is impossible as vn converges

to v∗ and, as we just saw, π+(σn, σ2) < v∗ − ε for all large n. Thus π+(σ∗1, x2) > v∗ for all

x2, as we wanted to show.

Thus we have shown that v(π+) 6 v∗ 6 v(π+) 6 v(π+), which shows that the game G(π+)

has a value and that this value equals v∗. Moreover the fact that π+(σ∗1, x2) > v∗ for all

x2 ∈ X2 implies that σ∗1 is a maximin strategy. �
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Theorem 2.9. If there exists a payoff function π̃ ∈ Π satisfying payoff approachability then:

(1) G(π̃) has an equilibrium that yields the value v∗(π̃).

(2) For each ε > 0, each player j has a strategy σεj that is ε-optimal in G(π̃) and such

that σεj (D(xi)) = 0 for all xi ∈ Xi.

(3) For each payoff function π′ ∈ Π, the value v∗(π′) exists and is the same as v∗(π̃).

Proof. We divide the proof into intermediate steps. First we prove part (1).

Lemma A.1. The game G(π̃) has an equilibrium and thus has a value v∗(π̃).

Proof of Lemma. We show that G(π̃) satisfies better-reply security, and then existence fol-

lows from Reny [23, Corollary 5.2].31 The players’ payoff functions are reciprocally upper

semi-continuous because the game is zero-sum, so it remains to show that the game is payoff

secure (Reny [23, Definition, p. 1033]). For this, fix a mixed-strategy profile (σ1, σ2). For

each player i, take a pure strategy xi in the support of σi such that π̃i(xi, σj) > π̃i(σi, σj).

By payoff approachability, for each ε > 0 there exists a point yi close to xi such that yi

is a point of continuity against σj and π̃i(yi, σj) > π̃i(xi, σj) − ε/2. Then, by Lemma 2.5,

there exists a neighborhood U ε
j of σj such that for each τj ∈ U ε

j , π̃i(yi, τj) > π̃i(xi, σj) − ε,
as required. �

Lemma A.2. Consider a sequence of games G(π̃n), where π̃n is the restriction of π̃ to

strategies in Σn
1 ×Σn

2 ⊂ Σ, and each sequence Σn
i converges to Σi in the Hausdorff topology

on compact subsets of Σi. If each game G(π̃n) has an equilibrium σn and a value vn, then

vn converges to v∗(π̃) and every limit point of σn is an equilibrium of G(π̃).

Proof of Lemma. Take a convergent subsequence of equilibria σn and associated values vn of

G(π̃n) converging to say σ∗ and v∗. We show that v∗ = v∗(π̃) and that σ∗ is an equilibrium

of G(π̃), which proves the result. Fix a point x1 for player 1 that is a point of continuity

of σ∗2. Fix ε > 0. Applying Lemma 2.5, there exists a neighborhood of U1 × U2 of (δx1 , σ
∗
2)

such that π̃(σ) > π̃(x1, σ
∗
2) − ε for all σ ∈ U1 × U2. Since the strategy sets Σn

i converge to

Σ, for all large n, there exists a strategy τn1 ∈ Σn
1 ∩ U1. Also, σn2 belongs to U2 for large

n. For such large n, as σn2 is an optimal strategy in G(π̃n), vn > π̃n(τn1 , σ
n
2 ), and thus

π̃(x1, σ
∗
2)− ε 6 π̃(τn1 , σ

n
2 ) 6 vn, which implies that π̃(x1, σ

∗
2) 6 ε+ v∗. Because ε is arbitrary,

we conclude that π̃(x1, σ
∗
2) 6 v∗ for any x1 that is a point of continuity against σ∗2. Applying

payoff approachability to player 1’s payoffs shows that π̃(x1, σ
∗
2) 6 v∗ for all x1 ∈ X1 and

thus that v∗ > v∗(π̃). A similar argument with the roles of the players reversed shows that

31Alternatively, one can show that G(π̃) satisfies condition (C2) in Duggan [10], which also implies that
G(π̃) is better-reply secure.
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v∗ 6 v∗(π̃) and thus v∗ = v∗(π̃) as required. Thus σ∗2 is an optimal strategy for player 2 in

G(π̃). Likewise, σ∗1 is optimal for player 1. Hence σ∗ is a Nash equilibrium of G(π̃). �

Now we conclude the proof of the other parts of the theorem. We show that player 2 has

a strategy as specified in part (2) of the theorem and that v(π′) 6 v∗(π̃) for all π′ ∈ Π. A

similar argument for player 1 completes the proof. As in the proof of Theorem 2.6, consider

the perturbed games Gn where the strategies of player 2 are restricted to Σn
2 . The strategy

sets converge to the strategy sets in G(π̃) and thus Lemma A.2 applies. Take a convergent

subsequence of equilibria (σn1 , σ
n
2 ) and associated values vn converging to (σ∗1, σ

∗
2) and v∗.

From Lemma A.2 we know that v∗ = v∗(π̃).

For each ε > 0, choose n such that vn 6 v∗(π̃)+ε. Since vn is the value of Gn, π(x1, σ
n
2 ) 6

vn 6 v∗(π̃) + ε for all x1. By construction, σn2 (D(x1)) = 0 for all x1, and σn2 satisfies the

properties specified in part (2) of the theorem. Also, observe that since σn2 (D(xi)) = 0 for all

xi, no matter how payoffs are defined on D, the strategy σn2 holds player 1 down to v∗(π̃)+ε,

i.e. v(π′) 6 v∗(π̃) + ε for all π′. Since ε is arbitrary, v(π′) 6 v∗(π̃), as was to be shown. �

Remark A.3.

(1) Observe that the strategy profile σ∗ constructed in the second part of the proof of

Theorem 2.9 by invoking Lemma A.2 is actually an equilibrium of G(π̃). Thus part

(1) can be viewed as a corollary to this result. Obtaining part (1) thus as a corollary

of Lemma A.2 relies only on perturbation methods. We present the proof of part (1)

separately, using better-reply security, to relate our results to previous literature on

existence of equilibria in discontinuous games.

(2) If we had simply assumed that each Xi is a compact space then we could not have

used the sequence Σ̃1
j ⊂ Σ̃2

j ⊂ · · · to construct a sequence of perturbed games.

Rather, we would have needed a net { Σ̃α
j } where the index α would be a collection

of neighborhoods {U(xj) }xj∈Xj
and Σ̃α

j would be a finite subset of mixed strategies,

one per open subset in a finite subcover of the collection. We would then use the

corresponding net of perturbed games and the argument would proceed analogously.

Proposition 2.12. A payoff function π̃ ∈ Π satisfies payoff approachability if:

(1) For each i, xi, D(xi) can be partitioned into finitely many Borel-measurable subsets

D1(xi), . . . , D
n(xi) such that for each 1 6 l 6 n:

(a) π̃i(xi, ·) is constant on Dl(xi).

(b) For each closed Al ⊆ Dl(xi), π̃i(yi, ·) is constant on Al for an open and dense set

of yi’s in a neighborhood U of xi.
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(2) The condition in Definition 2.8 of payoff approachability holds for i, xi and σj where

the support of σj is finite and contained in D(xi).

Proof. Suppose that the conditions of the proposition are satisfied by a payoff function π̃.

We show that π̃ satisfies payoff approachability. Fix (xi, σj). We can decompose σj into

an average of two strategies, σcj and σdj , where σcj(D(xi)) = 0 and σdj (D(xi)) = 1. For

every sequence xni → xi, we have that π̃i(x
n
i , σ

c
j) → π̃i(xi, σ

c
j) as in Lemma 2.5. Thus the

condition of Definition 2.8 is really about the property of π̃i(xi, σ
d
j ) and we can therefore

assume without loss of generality that σj = σdj , i.e. xi is a point of discontinuity against

every pure strategy in the support of σj.

Fix ε > 0. For each l choose a closed subset Al of Dl(xi) such that σj(A) > 1− ε, where

A = ∪lAl. Let τj be the conditional distribution over A. It is sufficient to find a point

yi in the ε-ball around xi such that yi is a point of continuity against σj and π̃i(xi, τj) 6

π̃i(yi, τj) + ε. Indeed, using the fact that π̃i(xi, xj) 6 π̃i(yi, xj) + 2 for all xj, this implies

that π̃i(xi, σj)− π̃i(yi, σj) 6 (1− ε)ε+ 2ε, which proves the result.

Pick a point xlj in each Al and define a mixed strategy τ̃j as follows: τ̃j(x
l
j) = τj(A

l). The

strategy τ̃j has finite support by construction and also because π̃i(xi, ·) is constant on each

Al by virtue of condition (1a), π̃i(xi, τj) = π̃i(xi, τ̃j). By condition (1b), we can choose a

neighborhood U contained in the ε-ball around xi such that π̃i(yi, ·) is constant on each Al

for an open and dense set of yi’s in U . By Lemma 2.4, there exists ỹi in U such ỹi is a point

of continuity against τ̃j and π̃i(xi, τ̃j) 6 π̃i(ỹi, τ̃j) + ε/2. Because ỹi is a point of continuity

against τ̃j and using condition (1b) and Lemma 2.4 again, for σj, there exists a point yi in

U such that: (i) π̃i(yi, ·) is constant on each Al; (ii) yi is a point of continuity against τj; (iii)

π̃i(ỹi, τ̃j) 6 π̃i(yi, τ̃j) + ε/2. By (i), π̃i(yi, τj) = π̃i(yi, τ̃j). Assembling these inequalities and

equalities,

π̃i(xi, τj) = π̃i(xi, τ̃j) 6 π̃i(ỹi, τ̃j) + ε/2 6 π̃i(yi, τ̃j) + ε = π̃i(yi, τj) + ε,

which completes the proof. �

Appendix B. Proof of Theorem 4.4

We begin with a preliminary lemma about the payoff function π̃ that describes the tie-

breaking rule T S, introduced in Definition 3.16 for simple-majority games. In this game, fix

(xi, σj) such that the support of σj is finite and contained in D(xi). Choose ε̄ as in the proof

of Theorem 3.12 and fix a neighborhood V (xi) also as there. The following lemma then

proves payoff approachability for (xi, σj) and, additionally, yields properties used to prove

Theorem 4.4.
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Lemma B.1. There exists k ∈ K∗(xi) such that π̃i(xi, σj) 6 π̃i(y
k
i , σj). Moreover the

inequality is strict if one of the following conditions holds:

(1) K(xi) is nonempty and there is a positive probability of (T2) or (T3) being used.

(2) K∗(xi) has at least three coordinates and there is a positive probability of (T2) or

(T3) being used.

(3) K∗(xi) has two coordinates and (T2) or (T3) is used in resolving a tie (xi, xj) for

which L0(xi, xj) 6= { k } for both k’s in K∗(xi).

(4) K(xi) is empty and (T1) is invoked for some (xi, xj) because i satisfies the conditions

for the rule and either: |L0(x)| > 3 and π̃i(y
k′
i , xj) = 0 for some k′ ∈ K∗(xi); or

uk′′(xi) 6= uk′′(xj) for some k
′′ ∈ K∗(xi).

Proof. The proof becomes transparent once we compare the payoffs to xi and yki against xj

for each k and xj, which we now do.

If (T1) is invoked and π̃i(y
k
i , xj) is 0 (resp. −1) for some k ∈ L∗(x), then π̃i(y

k′
i , xj)

is 0 (resp. −1) for all k′ in L∗i (x), because of simple-majority scoring, and π̃i(y
k′
i , xj) is 1

(resp. non-negative) for k′ ∈ K∗(xi) \ L∗i (x). Thus in this case π̃i(xi, xj) 6 π̃i(y
k
i , xj) for

all k ∈ K∗(xi), with strict inequality if K(xi) is empty and either: (i) |L0(x)| > 3 and

π̃i(y
k′
i , xj) = 0 for some k′ ∈ K∗(xi); or (ii) uk(xi) 6= uk(xj).

If (T1) is invoked because π̃j(y
k
j , xi) is 0, then π̃i(xi, xj) is zero if |L0(x)| = 2 and +1 if

|L0(x)| > 3. By Assumption 3.14, π̃i(y
k
i , xj) is nonnegative in the former case and is +1

in the latter. Likewise, if (T1) is invoked because π̃j(y
k
j , xi) is −1, then π̃i(y

k
i , xj) = +1 by

Assumption 3.14. In short, π̃i(y
k
i , xj) > π̃i(xi, xj) for all k. Thus, yki does at least as well as

xi against every xj for which (T1) is applied.

There remains to consider xj’s for which (T2) or (T3) is invoked.

Suppose L∗i (x) is empty for each i. If |Lj(x)| = K/2 then π̃i(xi, xj) = −1/2 from (T2). For

any k ∈ K∗(xi), because k /∈ L0(x), uk′(y
k
i ) > uk′(xj) for all k′ ∈ L0(x), so |Li(yki , xj)| = K/2

as well, and π̃i(y
k
i , xj) = 0. Likewise, if |Li(x)| = K/2, then π̃i(xi, xj) = 1/2 from (T2), and

because k /∈ L0(x), π̃i(y
k
i , xj) = 1. Summing up, π̃i(y

k
i , xj) − π̃i(xi, xj) = 1/2 if either

|Li(x)| or |Lj(x)| equals K/2. This difference is equal to +1 otherwise (i.e. if neither of the

candidates has half the votes outside of L0(x)). Thus all yki ’s do strictly better against all

these xj’s.

Suppose L0(x) contains just one voter, say k. If k /∈ K∗(xi), then the payoff difference

is as in the previous paragraph. If k ∈ K∗(xi), then K(xi) is empty (by point (1) of

Assumption 3.14) and π̃i(y
k
i , xj) − π̃i(xi, xj) = −1 + 1/2 = −1/2 (resp. 0 − 1/2 = −1/2)

if |Lj(x)| = K/2 (resp. |Li(x)| = K/2). This difference is equal to −1 if neither of the
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candidates has half of the voters outside of L0(x). But observe that for every k′ 6= k in

K∗(xi), π̃i(y
k′
i , xj) − π̃i(xi, xj) = π̃i(xi, xj) − π̃i(yki , xj), as uk(y

k′
i ) > uk(xj) > uk(y

k
i ). Thus

each yk
′
i does strictly better against all these xj’s.

Finally suppose L0(x) contains at least two voters, either L∗i (x) or L∗j(x) is nonempty but

each player for whom it is nonempty that he can achieve +1 rather than 0 or −1 specified

there. Then if L∗i (x) is nonempty π̃i(y
k
i , xj) = 1 for some k ∈ L∗i (x) (otherwise (T1) would

apply) and it holds for all k while π̃i(xi, xj) = 0; on the other hand if L∗i (x) is empty, then

trivially each yki achieves +1.

We now complete the proof of the lemma as follows. Obviously if K(xi) is nonempty, then

yki does at least as well as xi against each xj in the support of σj and strictly better against

all xj’s for which (T1) is not invoked, proving the first statement and points (1-3) of the

second, with point (4) being vacuously true. Assume from now on that K(xi) is empty.

Each yki does as well against all xj to which (T1) applies and strictly better against those

xj’s for which the condition of point (4) of the lemma holds. If (T2) or (T3) is not used

with positive probability then the first statement of the lemma holds as does point (4), while

points (1-3) are vacuous.

Suppose (T2) or (T3) is invoked with positive probability. If there is one k for which no

tie is just on this voter’s utility, then yki does strictly better than xi as the calculations above

show. Thus, the inequality holds, regardless of the conditions of points (2)-(4), if there is

such a k. Suppose then that for each k ∈ K∗(xi) there is an xj that ties with xi just on k.

It is clear that at least one of the yki ’s would do as well as xi against σj. Moreover, if there

are at least three coordinates in K∗(xi), one of them would do strictly better, proving point

(2). Also, if there are only two such k’s then one of them would do strictly better than xi

against σj unless each tie involves exactly one of these k’s, which proves point (3). Observe

that when there are two such k’s, and xi is not inferior to some yki against σj, then xi and

each yki give the same payoff against the conditional distribution over the xj’s for which (T2)

or (T3) is used.

Coming to ties involving (T1) it is clear now that if there is a tie with an xj where the

rule is invoked because of i, then for xi to do at least as well as all yki , we must have

K∗(xi) ⊂ L0(x) and π̃i(y
k
i , xj) = −1 for each k ∈ K∗(xi) if |L0(x)| > 2. If this is violated

for some xi and if xi is already not dominated by some yki against the conditional over xj’s

where (T1) is not used, then K∗(x) has two coordinates and as we argued at the end of the

last paragraph each k would do equally well against those not involving (T1), with the result

that it would do strictly better against σj, proving point (4). �
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We now recall and prove Theorem 4.4 for simple-majority Colonel-Blotto games.

Theorem 4.4. Let σ∗ be an equilibrium that is invariant under all the symmetries of the

game. If R1/R2 < r∗ then (σ∗1 ⊗ σ∗2)(D) = 0, that is, at the equilibrium σ∗ the tie-breaking

rule T S has zero probability of being invoked.

We set up some notation and prove a number of preliminary claims before proving the

theorem. Suppose xi is a strategy in Xi such that σ∗j (D(xi)) > 0. We can decompose σ∗j

into σc,xij and σd,xij , where the former puts zero probability on Xj \ D(xi) and the latter

puts probability one on it. Let L(xi) be the set of quadruples L = (L0, Li, Lj, Tn) such

that there is a positive probability under σ∗j of the set DL(xi) consisting of xj’s such that

(L0, Li, Lj) = (L0(xi, xj), L
i(xi, xj), L

j(xi, xj)) and provision (Tn) of rule T S is used, where

n ∈ { 1, 2, 3 }. For simplicity, from here on we suppress Tn in the notation. For each L

choose a point xj(L) ∈ DL(xi) and consider the conditional distribution σ̃xij over the xj(L)’s

given by σ̃xij (xj(L)) = (
∑

L′ σ
∗
j (D

L′(xi))
−1
σ∗j (D

L(xi)). Choose a neighborhood V (xi) such

that for each yi ∈ V (xi) and L, yi,k > xj,k(L) if k ∈ Li, and yi,k < xj,k(L) if k ∈ Lj.

Claim B.2. π̃i(xi, σ
∗
j ) = σ∗j (Xj \D(xi))π̃i(xi, σ

c,xi
j ) + σ∗j (D(xi))π̃i(xi, σ̃

xi
j ).

Proof. As the payoff π̃i(xi, ·) is constant on each DL(xi), π̃i(xi, σ
d,xi
j ) = π̃i(xi, σ̃

xi
j ) and the

result follows. �

Claim B.3. If xi is a best reply to σ∗j , then π̃i(xi, σ̃
xi
j ) > π̃i(y

k
i , σ̃

xi
j ) for all k ∈ K∗(xi).

Proof. Assume to the contrary that π̃i(xi, σ̃
xi
j ) < π̃i(y

k
i , σ̃

xi
j ) for some k ∈ K(xi). For each

ε > 0 let W ε(xi) be the set of yi such that |yi,k − xi,k| < ε. For each L, let Dε,L(xi) be the

set of xj in DL(xj) such that |xi,k − xj,k| > ε for k /∈ L0 and let Dε(xi) be the union of the

Dε,L(xi)’s. Choose ε small enough such that each xj(L) belongs to Dε(xi). Define σ̃ε,xij to

be the distribution over xj(L) that assigns probability σd,xij (Dε,L(xi))/
∑

L′ σ
d,xi
j (Dε,L′(xi) to

xj(L). By construction π̃i(yi(W
ε(xi), k), ·) is constant on the set Dε,L(xi) for each L and

π̃i(yi(W
ε(xi), k), xj) ∈ [−1, 1] for all xj. Hence,

π̃i(yi(W
ε(xi), σ

d,xi
j ) ∈ (σd,xij (Dε(xi)))π̃i(yi(W

ε(xi), k), σ̃ε,xij )± σd,xij (D(xi) \Dε(xi)) .

Obviously π̃i(yi(W
ε(xi), k), xj(L)) = π̃i(y

k
i , xj(L)) for all xj(L). Moreover, σ̃ε,xij converges to

σ̃xij and Dε(xi) converges to D(xi). Therefore, limε↓0 π̃i(yi(W
ε(xi), k), σd,xij ) = π̃i(y

k
i , σ̃

xi
j ) >

π̃i(xi, σ
d,xi
j ). Since limε↓0 π̃i(yi(W

ε(xi), k), σc,xij ) = π̃i(xi, σ
c,xi
j ), we then have that π̃i(xi, σ

∗
j ) <

limε↓0 π̃i(yi(W
ε(xi), k), σ∗j ) and σ∗j is not a best reply to σ∗j , a contradiction. �
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The next three claims argue directly about points (xi, xj) ∈ D.

Claim B.4. If xi is a vertex, then there exists x′j obtained by permuting the coordinates of

xj such that (T1) does not apply to (xi, x
′
j).

Proof. Let xi be a strategy that assigns Ri to a battle, say k = 1. Observe first that for

(T1) to be used in deciding a tie between xi and xj’s, this battle must belong to L0(x).

If R1 = R2, this means that xi = xj and (T3) is operative. If R1 > R2, then i = 2 and

π̃i(y
1
i , xj) = −1. Since R1 < r∗R2, there exists some k′ 6= 1 such that 0 < xj,k′ < R2. There

exists some x′j that swaps these two coordinates and now (T3) applies to (xi, x
′
j). �

Claim B.5. Suppose xi is not a vertex, and (T1) applies to (xi, xj) ∈ D. If π̃i(y
k
i , xj)

is either 0 or −1 for some k ∈ L∗(x), then either: (i) there exists k′ ∈ K∗(xi) such that

xi,k′ 6= x′j,k′ for some x′j obtained from permuting the coordinates of xj; or (ii) |L0(x)| > 3

and π̃i(y
k
i , xj) > 0 for some k ∈ L∗i (x).

Proof. If R1 = R2, conclusion (i) is valid, since otherwise xi = xj and (T3) would apply. If

R1 > R2 and i = 1, then conclusion (i) is obvious.

Assume now that i = 2, R1 > R2 and conclusion (i) of the claim is violated. Then

xi,k = xj,k for each positive coordinate of xi. If π̃i(xi, xj) = 0 for some k, then K is even,

|L0(x)| = 2, and |Lj(x)| = K/2− 1, while if π̃i(xi, xj) = −1, then either |Lj(x)| = bK/2c (K

can be odd or even) or |L0(x)| > 3 K is even and |Lj(x)| = K/2 − 1. If |L0(x)| = 2, then

|Lj(x)| = K − |L0(x)| = K − 2 > bK/2c − 1. Thus, when |Lj(x)| = K/2− 1, |L0(x)| > 3.

If |Lj(x)| = bK/2c, then |L0(x)| = dK/2e. Therefore, there exists k′ such that xi,k′ >

R2/dK/2e. Moreover, since |Lj(x)| = bK/2c, and R1 < r∗R2, there exists a coordinate k′′

such that xi,k′′ = 0 < xj,k′′ < R1 − R2 < R2/dK/2e. There exists x′j that swaps these two

coordinates and (xi, x
′
j) ∈ D. Now there is a coordinate, namely k′, for which xi,k′ > x′j,k′ , a

contradiction. So (i) must hold.

If |Lj(x)| = K/2−1 then, as we saw above, |L0(x)| > 3. Therefore, π̃i(y
k
i , xj) = 0 for each

k ∈ L∗i (x) , which proves (ii). �

Claim B.6. Suppose (xi, xj) ∈ D, both xi and xj have two positive coordinates, L∗(xi) is

nonempty, and (T2) or (T3) applies. There exists another x′j obtained by a permutation of

coordinates from xj where (T2) or (T3) applies as well but where (xi, x
′
j) are either tied in

two or more coordinates or in a zero coordinate.

Proof. Suppose xi and xj are tied in just coordinate, say k = 1, and that this coordinate is

positive for both players. Then K = 3 and i wins, say, k = 2 and j wins k = 3. Derive x′j
from xj by permuting coordinates 2 and 3. x′j ties with xi in coordinates 1 and 3. �
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Proof of Theorem 4.4. Fix x1 ∈ D such that σ∗j (D(xi)) > 0. We show that xi is not a best

reply to σ∗j , which proves the result.

Fix xj in D(xi). Let L = (L0(x), Li(x), Lj(x)). Observe that if x′j is obtained by

permuting coordinates of xj, then there exists x′j(L
′) in the support of σ̃xij where L′ =

(L0(xi, x
′
j), L

i(xi, x
′
j), L

j(xi, x
′
j)). Using this fact, the proof of the theorem follows quite eas-

ily. If xi is a vertex, by Claim A.4, point (1) of Lemma B.1 holds for σ̃xij , and by Claim B.3,

xi is not a best reply to σ∗j .

The other cases work similarly. If xi is not a vertex, but (T1) applies to (xi, xj), then

combining Claim A.5, point (4) of Lemma B.1 and Claim B.3 proves the result.

If (T2) or (T3) applies to (xi, xj), then by point (2) of Lemma B.1, xi has only two non-zero

coordinates. Claim A.6, point (3) of Lemma B.1, and Claim B.3 finish the proof. �
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