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Abstract

This paper studies allocation problems with and without monetary transfers, such

as multi-unit auctions, school choice, and course assignment. For this class of prob-

lems, we introduce a generalized random priority mechanism with budgets (GRP). This

mechanism is always ex post incentive compatible and feasible. Moreover, as the mar-

ket grows large, this mechanism can approximate any incentive compatible mechanism

in the corresponding continuum economy. In particular, GRP can be used to approx-

imate efficient and envy-free allocations, while preserving incentive compatibility and

feasibility.

1 Introduction

In this paper we study allocation problems with indivisible goods, such as multi-unit auc-

tions, school choice, course assignment, etc. We introduce a generalized random priority

mechanism with budgets (GRP), aimed at achieving the following properties: ex post in-

centive compatibility, feasibility, and, as the market grows large, approximate efficiency and

envy-freeness. The mechanism is applicable to environments with and without monetary

transfers and can accommodate interdependent valuations (as long as agents’ signals are

independent conditionally on the true state of the world).
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The goal of finding a mechanism that achieves these properties is motivated by two obser-

vations. On one hand, several negative results are known for finite economies. For instance,

full efficiency is generally impossible to achieve with incentive-compatible mechanisms when

agents have interdependent values and receive multidimensional signals (Maskin, 1992; Je-

hiel and Moldovanu, 2001; Jehiel et al., 2006; Hashimoto, 2008; Che et al., 2012). Moreover,

when monetary transfers cannot be used, efficiency and fairness cannot coexist with incentive

compatibility even when values are private (Zhou, 1990; Bogomolnaia and Moulin, 2001).

On the other hand, in infinite (continuum) economies, where one agent’s actions do not

affect the allocations of others, the set of outcomes that are implementable by an incentive

compatible and feasible mechanism is much larger. In particular, in such settings, efficiency

is much easier to achieve. This contrast gives rise to a natural question: In markets that are

large (but finite), is it possible to approximate the corresponding infinite-market mechanism

(e.g., by slightly relaxing full efficiency) in such a way that incentive compatibility and

feasibility are preserved? Our results provide a constructive positive answer to this question:

GRP is a way to achieve it.

1.1 Main Results

Our main finding is as follows:

Under certain conditions, any feasible (ex post) incentive-compatible large-market

mechanism can be asymptotically approximated by a finite-market mechanism that

is feasible and ex post incentive compatible.

This approximation should be interpreted as a convergence in probability: With a probability

almost equal to one, the payoffs and revenues in finite markets are (uniformly) very close to

those in infinite markets.

We employ the GRP mechanism with budgets in the approximation. The random priority,

as its name suggests, randomly assigns strict priorities to agents. From the top of the

ordering, agents sequentially and dictatorially choose their optimal consumption bundles

from the remaining objects. This mechanism is clearly feasible and strategy-proof (dominant

strategy incentive compatible) in the case of private values (Abdulkadiroğlu and Sönmez,

1998). Importantly, these properties are inherited by GRP, which by construction satisfies

the requirements of feasibility and ex post incentive compatibility.

Like the random priority, GRP randomly prioritizes agents based on which consumption

bundles are sequentially assigned to them. Before the sequential assignment starts, the

mechanism gathers reports from agents and then assigns to each agent a budget set. This

set consists of the options potentially available to the agent, and it may depend on any

report except for the agent’s own report. The mechanism then begins assignment according

to the following process. From the top of the priority, each agent lets the mechanism solve
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her decision problem. The mechanism chooses an optimal option from the budget set, but

an option is available only when it is always feasible regardless of the choice of the agent’s

report. This feasibility constraint keeps GRP always feasible. It is also ex post incentive

compatible because both the budget set and feasibility constraint are independent of the

corresponding agent’s own report, as is further described in Section 4.

We emphasize the feasibility of the approximating mechanism. Feasibility is often con-

sidered to be obligatory—and this paper essentially sticks to this view—but sometimes de-

sirable mechanisms are found in the class of infeasible ones (Cordoba and Hummond, 1998;

Kovalenkov, 2002; Budish, 2011). In finite markets, we always use GRP to ensure that

infeasibility never occurs.

1.2 Application 1: Combinatorial Auctions

We apply our approximation method to two interesting cases. Our first application is com-

binatorial auctions. We establish the following in Section 6.2:

A Walrasian equilibrium exists in continuous markets under a certain non-atomic

condition. There exists a finite-market mechanism that approximates equilibrium

outcomes in large finite markets. The approximating mechanism is feasible, ex

post incentive compatible, asymptotically surplus maximizing, and asymptotically

envy-free.

This result asserts that full efficiency is nearly achievable even with ex post incentive

compatibility. This finding contrasts with the impossibility results of Maskin (1992), Jehiel

and Moldovanu (2001), Jehiel et al. (2006), and Hashimoto (2008). All these studies assume

that agents have interdependent values and multidimensional signals. The first two studies

show that it is almost impossible for Bayesian incentive compatible mechanisms to achieve full

efficiency, while the latter two even claim that any ex post incentive-compatible mechanism

is almost always constant if goods cannot be wasted; in other words, such a mechanism

simply follows a predetermined assignment plan (i.e., it ignores reports from agents) and

thus is highly inefficient. Bikhchandani (2006) has already pointed out that this generic

constancy result breaks down when goods are private. However, the degree to which ex post

incentive-compatible mechanisms could approach the efficiency frontier in this case remained

unanswered.

When valuations are private and satisfy gross substitutability, mechanisms with desir-

able properties do exist (Ausubel, 2006; İnal, 2011). However, without this restriction, they

become harder to construct. For example, Vickery outcomes may generate very low revenues

for the sellers and thus will fall outside of the core (Ausubel and Milgrom, 2002). Partly mo-

tivated by this problem, Day and Milgrom (2008) introduce a new scheme, which they term

core-selecting package auctions. These auctions are similar to the asymptotically Walrasian
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mechanism in that both types of mechanisms always use, or at least aim to use, outcomes

in the core. Like Day and Milgrom (2008), we do not impose the gross-substitute condition

on preferences. Unlike Day and Milgrom (2008), however, we focus on incentive compatible

mechanisms, whereas they focus on fully efficient mechanisms that may not be incentive

compatible.

Notably, we do not impose such assumptions on individual preferences as concavity, gross

substitution, or any other restriction of that nature. We instead need a certain distributional

nonatomic condition, but we can allow any sort of complementarity in individual utility

functions. In this sense, this paper studies a more general preference domain compared

to the literature on finite-economy Walrasian equilibria, which rely on the gross substitute

condition (Gul and Stacchetti, 1999; Ausubel, 2006; İnal, 2011).

A lattice-theoretical single-crossing condition, as appears in Bikhchandani (2006), is also

unnessesary at the ex ante stage when utility functions depend on signals. However, we do

need a weak nonconstancy condition with respect to signals, which is almost identical to

that described by Jehiel et al. (2006) when agents have only two choices.

1.3 Application 2: Multi-Unit Assignment without Money

Our method also applies to allocation problems in which agents potentially have multi-

unit demands and monetary transfers are never used, such as in the examples of school

choice and course assignment. In Section 6.3, we approximate an extension of the Hylland-

Zeckhauser (HZ) equilibrium, the equilibrium concept proposed by Hylland and Zeckhauser

(1979). Considering finitely many agents with single-unit demands, the authors define this

equilibrium concept in hypothetical markets where agents purchase lotteries of goods using

pseudomoney. We extend the HZ equilibrium to the case with a continuum of agents who

may have multi-unit demands, establishing the following result:

A generalized Hylland-Zeckhauser equilibrium exists in continuous markets. There

exists a mechanism that approximately achieves equilibrium outcomes in large fi-

nite markets. The approximating mechanism is feasible, ex post incentive com-

patible, asymptotically efficient, and asymptotically envy-free.

This result may come as a surprise, especially when agents have multi-unit demands.

First of all, the Hylland-Zeckhauser equilibrum does not immediately extend to multi-unit

demands. As explained above, agents purchase individual-level lotteries in the pseudomar-

ket, but these lotteries must be consistently implemented by an economy-level lottery. For

example, two identical lotteries that give each of two agents a 50% chance of winning a unique

item cannot be independently implemented; instead, they must be perfectly negatively cor-

related. As long as agents demand at most one unit, the existence of such an economy-level

lottery is ensured by the Birkhoff–von Neumann theorem (Hylland and Zeckhauser, 1979;
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Bogomolnaia and Moulin, 2001). Budish et al. (2012) successfully extend HZ equilibria to

multi-unit demands by restricting the class of possible preferences. This class of preferences,

however, does preclude certain complementarities; e.g., v(1, 0) = v(0, 1) = 1 and v(1, 1) = 3

is not allowed. In this paper, we do not impose any such restrictions on preferences.

In finite markets, a number of papers have studied multi-unit assignment problems.

Among strategy-proof mechanisms, the serial dictatorship emerges as the unique determin-

istic efficient mechanism with additional technical properties (Pápai, 2001; Ehlers and Klaus,

2003), but the mechanism is often considered to be unfair. Two studies propose auction-

or market-like mechanisms with pseudomoney (Sönmez and Ünver, 2010; Budish, 2011).

Sönmez and Ünver (2010) propose an auction-like mechanism based on the agent-proposing

deferred acceptance mechanism but their mechanism may not be efficient. Meanwhile, Bud-

ish (2011) proposes a market mechanism that possesses desirable properties in efficiency and

fairness, but generally induces infeasible allocations. Further, Kojima (2009) extends the

probabilistic serial mechanism (Bogomolnaia and Moulin, 2001) to the case with multi-unit

demands and additively separable utility functions, but both the extension and the original

are efficient only in the ordinal sense rather than in the much stronger cardinal sense.

Even when agents have single-unit demands and private values, it is not immediately clear

how closely “satisfactory” strategy-proof mechanisms can approach full efficiency. As shown

by Zhou (1990), exact efficiency is never achieved by a symmetric strategy-proof mechanism.

In contrast, ordinal efficiency is asymptotically achieved by strategy-proof mechanisms, as

demonstrated by Che and Kojima (2010) and Liu and Pycia (2012). However, ordinal

efficiency is weaker than our definition of efficiency (i.e., cardinal efficiency).

1.4 Related Literature

The recent study by Azevedo and Budish (2012) also considers incentives and approxi-

mation in finite and infinite markets, but their approach contrasts with that described in

the present paper. These authors consider a finite-market mechanism with a sequence of

Bayesian equilibria indexed by market size. Their main theorem asserts that a sequence

of equilibrium outcomes can be approximated by using the truth-telling outcomes of an-

other mechanism that is asymptotically strategy-proof. Our approach differs from theirs in

two ways. First, we consider exact (ex post) incentive-compatibility rather than asymptotic

incentive-compatibility, even in finite markets. Second, we start from the existence of an in-

centive compatible large-market mechanism, whereas Azevedo and Budish (2012) start from

a sequence of Bayesian equilibria in finite markets.

Two studies propose (almost) strategy-proof mechanisms that approximate Walrasian

equilibria in pure exchange economies with divisible goods (Córdoba and Hammond, 1998;

Kovalenkov, 2002). However, Córdoba and Hammond’s mechanism is only asymptotically

strategy-proof, while Kovalenkov’s is only asymptotically feasible. In contrast, our mecha-
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nism is always both feasible and strategy-proof regardless of market size.

Segal (2003) also puts forward the idea of the asymptotic approximation in the context

of optimal auctions. Assuming that the distribution of i.i.d. signals is unknown, he demon-

strates that the revenues from the optimal auction asymptotically achieve the maximum

revenues that are achievable when the distribution is known. He focuses on private values,

whereas we allow interdependent values in this paper.

Approximation problems with Bayesian incentive compatibility have been considered by

the series of papers by Gul and Postlewaite (1992) and McLean and Postlewaite (2002,

2003a,b, 2004, 2005). These papers study the approximation of full efficiency or incomplete-

information core when market size is large or agents are informationally small. They assume

finitely many states and types, which preclude subtle difficulties in approximation, whereas

the present paper considers continuously many types.

1.5 Organization of the Paper

The remainder of this paper is organized as follows. Section 2 provides a simple auction

example that illustrates the idea of the approximation theorem. We present our model in

Section 3. GRP and its properties are described in Section 4. Section 5 presents the approx-

imation theorems. In Section 6, we apply these approximation theorems to combinatorial

auctions (Section 6.2) and multi-unit assignment without monetary transfer (Section 6.3).

Section 7 discusses related issues and concludes.

2 Example

We start with an example that illustrates the main idea of the paper. There are m identical

indivisible objects and n (= 2m) agents. Agent i has a quasi-linear expected utility function

so that she receives a payoff of

uni = xiv
n
i − p (1)

when she obtains an object with probability xi and pays p in expectation to the seller. The

valuation vni takes the following form:

vni (sn) = αi +
1

n

n∑
j=1

βj, (2)

where sn denotes vector (s1, . . . , sn) and each sj = (αj, βj) ∈ R2 is the signal that agent j

observes as her private information. The second component βi is decomposed as βi = θ+ δi,

where θ and δi are random variables that no agent can directly observe. The random variables

αi, δi, and θ are all independently and uniformly distributed on [0, 1].
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In this environment, no ex post incentive-compatible mechanism achieves full efficiency.

To see this, let αM−i denote the median of α−i = (αj)j 6=i. (Recall that n = 2m is even, so α−i
consists of an odd number of elements and thus some element of α−i coincides with αM−i.) If

(x1, . . . , xn) ∈ [0, 1]n is an efficient allocation, then

xi


= 0 if αi < αM−i

∈ [0, 1] if αi = αM−i

= 1 if αi > αM−i.

(3)

Fix agent i and signals sn−i such that αMi ∈ (0, 1). Let pi,1 be agent i’s payment when xi = 1,

and let pi,0 be her payment when xi = 0. (Both pi,1 and pi,0 may depend on sn−i but must

be independent of sni as a consequence of ex post incentive compatibility.) Let

pi(s−i) = pi,1(sn−i)− pi,0(sn−i) (4)

denote the difference between the two payments. Consider α1
i = αM−i + ε and α2

i = αM−i − ε,
where ε is a small positive number. Ex post incentive compatibility requires α1

−i+
1
n

∑
j βj ≥

pi(s
n
−i) and α2

−i + 1
n

∑
j βj ≤ pi(s−i). By taking the limit ε→ 0,

pi(s
n
−i) = αM−i +

1

n

n∑
j=1

βj =

[
αM−i +

1

n

∑
j 6=i

βj

]
+
βi
n
. (5)

This is a contradiction because pi(s
n
−i) cannot depend on agent i’s signal si, in particular its

second component βi.

In contrast, full efficiency is achieved with a continuum of agents in Walrasian equilibria.

In the limit as m→∞, the valuation function vni (sn) converges to

v∞(αi|θ) = αi + θ +
1

2
. (6)

Because there are twice as many agents as objects and the aggregate distribution of α is

uniform on [0, 1], the market-clearing price is equal to the median value of v∞:

p∞(θ) = θ + 1.1 (7)

In large but finite economies, the Walrasian equilibrium above can be approximated by

the following mechanism, which generalizes the random priority mechanism (aka random

serial dictatorship):

1Indeed, a game with a continuum of agents with i.i.d. signals is ill-defined because a continuum of

i.i.d. random variables easily fails to be measurable (Feldman and Gilles, 1985; Judd, 1985). To avoid this

technical problem, without formally modeling such a game, we mechanically define a mechanism as a pair of

functions ϕ∞ = (x∞, t∞) that map signal s and state θ to the probability x∞(s, θ) of winning and payment

t∞(s, θ). This approach suffices for our purpose because we are interested in finite-economy approximation

rather than the modeling of infinite economies themselves.
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(i) Each agent i reports ŝi = (α̂i, β̂i) ∈ S ≡ [0, 1]× [0, 2] simultaneously.

(ii) A priority � over the agents is randomly chosen.

(iii) Agent i receives an object and pays

pni (ŝn−i) =
1

n− 1

∑
j 6=i

β̂j +
1

2
(8)

whenever

(a) vi(ŝ
n) > pi(ŝ

n
−i), and

(b) m > maxs′i
∑

j�i 1{vnj (s′i, ŝ
n
−i) > pnj (s′i, ŝ

n
−{i,j})}.

(Otherwise, agent i does not receive an object and pays nothing.)

Let us explain the idea behind step (iii) in more detail. The price pi(ŝ−i) is an estimate of

the full-information market clearing price that does not involve agent i’s signal to preserve

incentive compatibility.2 Condition (a) simply ensures that it is individually rational for

agent i to buy an object at the price pni (ŝn−i). Finally, condition (b) ensures feasibility, while

at the same time making sure that ex post incentive compatibility is preserved. A seemingly

more straightforward feasibility condition would say that there are enough objects remaining

to get one to agent i:

m >
∑
j�i

1{vnj (ŝn) > pnj (ŝn−j)}. (9)

This condition, however, may allow agents to profitably deviate from truth-telling: Agents

may be able to prevent other agents from getting an object by manipulating their reports.

To prevent such a manipulation, condition (b) must be independent of agent i’s own message

ŝi.

The following simple two-agent situation exemplifies that the alternative condition (9)

induces a profitable deviation. Suppose s1 = s2 = (0.6, 0.4) so that v1(s1, s2) = v2(s1, s2) = 1

and p1(s2) = p2(s1) = 0.9. With the truthful reports, the object is sold to the agent with

the higher priority for price 0.9. Consider the deviation that agent 1 submits a false report

ŝ1 = (0, 2). This report prevents agent 2 from winning because v2(ŝ1, s2) = 1.3 < 2 = p2(ŝ1).

In contrast, it does not change agent 1’s estimated valuation, v1(ŝ1, s2) = 1, or personalized

price for the object, p1(s2) = 0.9. The outcome with this report is such that agent 1 can buy

the object for price 0.9 for sure and the agent prefers this outcome to the truth-telling one.

It is intuitive that the generalized random priority mechanism is asymptotically efficient

because all the prices and valuations appearing in step (iii) uniformly converge to their

2Note that
∑
j 6=i βj converges to θ + 1/2 and hence pni (sn−i) converges to p∞(θ) = θ + 1.
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infinite-economy counterparts. To see this, let s̃i and θ̃ denote the random variables that

represent the signal of agent i and the state. Consider pni (s̃n−i) and pnj (s′i, s̃
n
−{i,j}), the prices

appearing in conditions (a) and (b) with the reports ŝn replaced by the true signals s̃n. We

focus on the latter because it can represent the former as a special case by interchanging i

and j. All of these prices are uniformly close enough to the best unbiased estimator of the

true state θ̃, namely pn(s̃n) = 1
n

∑
β̂j + 1

2
, which consistently estimates p∞(θ̃), that is,

max
i,j,s′i

∣∣pnj (s′i, s̃
n
−{i,j})− p∞(θ̃)

∣∣ ≤ max
i,j,s′i

∣∣pnj (s′i, s̃
n
−{i,j})− pn(s̃n)

∣∣+
∣∣pn(s̃n)− p∞(θ̃)

∣∣ (10)

≤ max
i,j,s′i

[
1

n
· β̃j +

1

n(n− 1)

∑
k 6=j

β̃k

]
+
∣∣pn(s̃n)− p∞(θ̃)

∣∣ (11)

→p 0, (12)

where the arrow→p signifies the convergence in probability. Similarly, the valuation vj(s
′
i, s̃−i)

also uniformly converges to v∞(α̃j|θ̃) in probability. These two facts suggest that condition

(a) also “uniformly converges” to the infinite-economy assignment rule:

v∞(α̃i|θ) > p∞(θ). (13)

They also imply that the rationing rule, condition (b), virtually disappears as m goes to ∞,

because its right-hand side is asymptotically bounded by m:

1

m
·max
s′i∈S

∑
j�i

1{vnj (s′i, ŝ
n
−i) > pnj (s′i, ŝ

n
−{i,j})}

≤ 2

n
·max
s′i∈S

n∑
j=1

1{vnj (s′i, ŝ
n
−i) > pnj (s′i, ŝ

n
−{i,j})} (14)

→p 2 ·
∫

1{v∞(α|θ̃) > p∞(θ̃)}dα =
1

2
· 2 = 1. (15)

More formal arguments are presented in subsequent sections with the general model

presented in the next section.

3 The Model

3.1 Environment

We consider a sequence of finite economies indexed by the number of agents, n ∈ N ≡
{1, 2, 3, . . .}. In finite economies, each agent i ∈ Nn = {1, . . . , n} receives a signal si ∈
S ≡ [0, 1]dS , independently and identically distributed with density f(si|θ) conditional on

9



state θ ∈ Θ ≡ [0, 1]dΘ .3 The density f(s|θ) is positive and continuous on S × Θ, and any

two different states θ, θ′ ∈ Θ are statistically distinguishable, i.e., f(s|θ) 6= f(s|θ′) for some

s ∈ S. The prior on θ is given by a positive continuous density f(θ). The conditional density

function of θ given sn = (s1, . . . , sn) is denoted by f(θ|sn). Explicitly,

f(θ|sn) =

∏n
i=1 f(si|θ)f(θ)∫

Θ

∏n
i=1 f(si|θ′)f(θ′)dθ

. (16)

Throughout the paper, we use symbols si and θ to denote the (deterministic) elements of S

and Θ, respectively, whereas the corresponding random variables are denoted by s̃i and θ̃.

There are L goods. The per-capita supply of each good ` is q` ∈ (0,∞], meaning that

the total supply of commodity ` is bn · q`c. The set of all possible consumption bundles is

X ⊆ {0, 1, 2, . . . , x̄}L, where a positive integer x̄ signifies the maximum consumption level.

The set X contains the zero vector, 0.

Each agent i has a common quasi-linear expected utility function

u∞(xi, ti|si, θ) = v∞(xi|si, θ)− ti. (17)

Here, xi ∈ X is a consumption bundle, ti ∈ R is the amount of payment, si ∈ S is the signal

observed by agent i, and θ ∈ Θ is a state, which serves as a common-value component.4

The function v∞(x|s, θ) is continuous with respect to s and θ. Without loss of generality,

we normalize v∞ so that v∞(0|s, θ) = 0 and v∞(x|s, θ) ≤ 1 for all (x, s, θ).5

We impose the following assumption on v∞.

Assumption 1. For each xi, x
′
i ∈ X and θ ∈ Θ, mapping

wxi,x′i,θ(si) = v(xi|si, θ)− v(x′i|si, θ) (18)

is continuously differentiable, and its first-order derivative is nonzero for all si ∈ S.

We evaluate the welfare of agents conditional on signals sn rather than on state θ be-

cause the vector sn contains all the available information in the economy although θ is the

3More generally, S and Θ can be compact subsets of Euclidean spaces such that (i) S has a nonempty

interior whose closure coincides with S and (ii) either Θ has a positive Lebesgue measure or Θ is a countable

set. The function f(θ) is a continuous density when Θ has a positive measure. When Θ is countable, f(θ)

is the probability of θ. In either case, f(θ) > 0 for all θ ∈ Θ. The results and proofs extend to the general

case without modification.
4The signal si may contain the characteristics of the agent so that agent i’s utility function u∞(xi, ti|si, θ)

may depend on si.
5Such v∞ can be constructed from the original function v∞o by

v∞(xi|si, θ) =
v∞o (xi|si, θ)− v∞o (0|si, θ)

max{1,maxxi,si,θ[v
∞
o (xi|si, θ)− v∞o (0|si, θ)]}

.
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fundamental parameter that nobody ever observes. Define uni (xi, ti|sn) and vni (xi|sn) as the

expected values of u∞(xi, ti|si) and v∞(xi|si), respectively, conditional on sn. That is,

vni (xi|sn) =

∫
Θ

v∞(xi|si, θ)f(θ|sn)dθ (19)

and uni (x, t|sn) = vni (x|sn)− t.
We can naturally extend the domains of u∞(·|s, θ), v∞(·|s, θ), uni (·|sn), and vni (·|sn) to

lottery spaces. For example, uni (λ|sn) is defined by

uni (λ|sn) =

∫
(X×R)n

uni (xi, ti|sn)dλ(x1, t1, . . . , xn, tn) (20)

for λ ∈ ∆((X × R)n), where ∆(A) denotes the set of lotteries on A.

3.2 Mechanisms

3.2.1 Mechanisms for Finite Economies

We first define mechanisms for finite economies and their properties. A mechanism is a

sequence ϕ = {ϕn} of mappings ϕn : Sn → ∆((X × R)n). We say ϕ is money-free if

ϕn(sn)
{

(x1, 0; . . . ;xn, 0) : x1, . . . , xn ∈ X
}

= 1 (21)

for all n and sn ∈ Sn; i.e., the outcomes of the mechanism never involve monetary transfers.

Mechanism {ϕn} is ex post incentive compatible if

uni
(
ϕn(sn); sn

)
≥ uni

(
ϕn(ŝi, s

n
−i); s

n
)

(22)

for all n, i ∈ Nn, sn ∈ Sn, and ŝi ∈ S.

We define the (approximate) feasibility of allocations and then mechanisms. Allocation

xn ∈ Xn is ε-feasible if x1 + · · · + xn ≤ (1 + ε)nq. Mechanism {ϕn} is ε-feasible if ϕn(sn)

assigns probability 1 on ε-feasible xn ∈ Xn for all n ∈ N and sn ∈ Sn. When an allocation

or a mechanism is 0-feasible, we simply say that it is feasible.

3.2.2 Mechanisms for the Infinite Economy

We now define mechanisms for the infinite economy, which can be viewed as the limit of finite

economies. The infinite economy has a continuum of agents whose signals are distributed

according to the density f(s|θ). Conditional on state θ, the economy has no aggregate

uncertainty. This naturally motivates us to focus on the class of mechanisms that use only

state θ and agent i’s report si to determine agent i’s assignment.

Formally, an ∞-mechanism is a mapping ϕ∞ = (z∞, t∞) : S × Θ → ∆(X) × R.6 An

∞-mechanism ϕ∞ = (z∞, t∞) is money-free if t∞(s|θ) = 0 for all s ∈ S and θ ∈ Θ.

6An alternative definition is ϕ∞ : S × Θ → ∆(X × R), but this definition is functionally equivalent to

our first definition by taking the expectation of the monetary part.
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An ∞-mechanism ϕ∞ is incentive compatible if

u∞
(
ϕ∞(s|θ)

∣∣s, θ) ≥ u∞
(
ϕ∞(ŝ|θ)

∣∣s, θ) (23)

for all s, ŝ ∈ S, and θ ∈ Θ.

Allocation (measurable mapping) z : S → ∆(X) is ε-feasible at θ ∈ Θ if∫
EX [z(s)]f(s|θ)ds ≤ (1 + ε)q, (24)

where EX [z′] =
∑

x∈X x · z′(x) for each z′ ∈ ∆(X). An ∞-mechanism ϕ∞ = (z∞, t∞) is

ε-feasible if z∞(·|θ) is ε-feasible at θ for all θ ∈ Θ. Again, we define a feasible ∞-mechanism

as a 0-feasible one.

Next, we introduce the notion of a budget set, a generalization of Walrasian budget sets,

together with related concepts. Budget sets are closely related to incentive compatibility,

as we will see in the next paragraph. A budget set B is a set of pairs (z, t) of a lottery

z ∈ ∆(X) on X and payment t ∈ R such that 0 ∈ B. Budget set B is money-free if t = 0

for all (z, t) ∈ B; i.e., no option in B involves a monetary transfer. Let B be the space of

budget sets and Bf the set of finite budget sets. A budget rule is a mapping B∞ : Θ → B,

and it is finite if B∞(θ) ∈ Bf for all θ ∈ Θ. A budget rule B∞ is money-free if B∞(θ) is

money-free for all θ ∈ Θ.

Budget sets naturally represent incentive-compatible ∞-mechanisms. A budget rule B∞

implements an ∞-mechanism ϕ∞ if

ϕ∞(s|θ) ∈ arg max
z∈B∞(θ)

u∞(z|s, θ). (25)

We simply say that (ϕ∞, B∞) is an∞-mechanism when B∞ implements ϕ∞, slightly abusing

notations. Note that a mechanism ϕ∞ can be implemented only by some B∞ when ϕ∞ is

incentive compatible. Conversely, an incentive-compatible ∞-mechanism ϕ∞ always has a

budget set rule B∞(θ) = {ϕ∞(s|θ) : s ∈ S} that implements ϕ∞. (However, the induced

budget set as above may not satisfy some desirable properties. We thus also consider other

implementations of incentive compatible mechanisms later in this paper.)

Example 1. Consider a limit economy with a single good and unit demands so that X =

{0, 1}. When q = 1, selling the good at a fixed price p is a feasible, incentive-compatible ∞-

mechanism with a finite budget set rule. That is, a finite budget set rule B∞ = {(0, 0), (1, p)}
implements a feasible ∞-mechanism

ϕ∞(s|θ) =

(1, p) if v∞(1|s, θ) ≥ p

(0, 0) otherwise.
(26)

Example 2. Consider a limit economy with two goods and unit demands so that X =

{(0, 0), (1, 0), (0, 1)}. Let (z1, z2) denote the lottery in which an agent obtains good ` with

probability z`. Consider a money-free budget set B∞ = {(0, 0), (1/2, 0), (0, 1/2)}.7 That is,

7More precisely, this budget set should be written as {((0, 0), 0), ((1/2, 0), 0), ((0, 1/2), 0)}.
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agents may choose a 50% chance of winning good 1, a 50% chance of winning good 2, or

opting out. This budget set (rule) B∞ implements a nonmonetary ∞-mechanism

ϕ∞(s|θ) =


(1/2, 0) if v∞((1/2, 0)|s, θ) > max{0, v∞((0, 1/2)|s, θ)}
(0, 1/2) if v∞((0, 1/2)|s, θ) > max{0, v∞((1/2, 0)|s, θ)}
(0, 0) otherwise,

(27)

which is feasible when q1, q2 ≥ 1/2.

4 Generalized Random Priority Mechanism with Bud-

gets

We introduce a new class of mechanisms, the generalized random priority mechanism with

budgets (GRP), which generalizes the random priority mechanism (aka random serial dicta-

torship). Any mechanism in this class is feasible and ex post incentive compatible. GRP may

have other desirable properties, such as asymptotic efficiency, depending on the specification

of the rule.

GRP is based on budget sets; the rule of GRP depends on a sequence Bn = {Bn
i }ni=1 of

mappings that determines assignment of budget sets. Each Bn
i is a mapping from a vector

of signals sn−i ∈ Sn−1 to a finite budget set Bn
i (sn−i) ∈ Bf . Given such Bn, GRP, denoted by

GRP[Bn], runs as follows:

(i) The mechanism randomly chooses a priority � over agents with an equal probability.

Independently of �, the mechanism assigns a number ri to each agent i ∈ Nn so that ri
is independently and uniformly distributed on [0, 1]. This ri is a randomization device

used to determine the outcome of a lottery.

(ii) Each agent i ∈ Nn simultaneously submits a report ŝi ∈ S. From ŝn, the mechanism

assigns agent i a finite budget set Bn
i (ŝn−i), independent of i’s own message, ŝi.

(iii) The mechanism sequentially constructs allocations and transfers, (xi(�; r�i; ŝ
n), ti(�; r�i; ŝ

n)),

from the top of the priority ordering � as follows:8

(a) As a proxy of agent i, the mechanism chooses (zi(�; r�i; ŝ
n), ti(�; r�i; ŝ

n)) from

8Here, r�i = (rj)j�i and r�i = (rj)j�i.
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the solutions of the following problem:

max
z,t

uni (z, t|ŝn)

subject to (i) (z, t) ∈ Bn
i (ŝn−i) and (28)

(ii) x ≤ bnqc −max
s′i∈S

∑
j�i

xj(�, r�j; s′i, ŝn−i) (29)

for all x ∈ X s.t. z(x) > 0.

That is, condition (ii) ensures the feasibility of lottery z, no matter which signal

agent i reports and which outcome x is realized from the lottery z. If this problem

has multiple solutions, the mechanism uses a deterministic predetermined rule to

select (zi, ti) from them.9

(b) An outcome xi(�, r�i; ŝn) is realized from the lottery zi(�, r�i; ŝn) by using i’s

randomization device ri in the following manner:

xi(�, r�i; ŝn) = x(k) if r ∈ (Rk−1, Rk], (30)

where Rk =
∑

k′≤k zi(x
(k′)|�, r�i; ŝn). Here, (x(1), . . . , x(|X|)) is the lexicograhical

order of X.10

Given the name of this mechanism, we wish to make sure that GRP does in fact generalize

the random priority mechanism. The example below shows that it is indeed the case.

Example 3 (Random Priority). Suppose that values are private: v(x|si, θ) = v(x|si). Let

the budget set be constant: Bn
i = X × {0}. Then, the GRP mechanism works as follows:

(i) A priority � is randomly chosen.

9Although such a rule is arbitrary, for concreteness, we specify the rule we use. The mechanism selects

the smallest element as (zi, ti) from the solution set with respect to a linear order m on ∆(X)×R. Here, m is

the lexicographical order on ∆(A)×R by identifying (z, t) ∈ ∆(A)×R with a vector (z(x(1)), . . . , z(x(|X|)), t).
10For example, suppose zi(�, r�i; ŝn) is the lottery such that

(z(0, 0), z(0, 1), z(1, 0), z(1, 1)) = (0.1, 0.4, 0.3, 0.2).

Then, as a function of ri, the outcome xi(�, r�i; ŝn) is given by

xi(�, r�i; ŝn) =


(0, 0) if ri ∈ (0, 0.1]

(0, 1) if ri ∈ (0.1, 0.5]

(1, 0) if ri ∈ (0.5, 0.8]

(1, 1) if ri ∈ (0.8, 1]
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(ii) Agents simultaneously report their signals si (or equivalently, their utility functions

vi(x) = v(x|si)).

(iii) Agent i obtains xi(�; vj), which is a solution of the problem: max vi(x) subject to the

feasibility constraint x ≤ bnqc −
∑

j�i xj(�; vj).

The GRP mechanism is feasible by construction. Thanks to the feasibility constraint

(30), the lottery zi(�, r�i; ŝn) never assigns a positive probability to an assignemt x that may

violate the inequality x+
∑

j�i xj(�, r�j; ŝn) ≤ bnqc, and hence
∑

j�i xj(�, r�j; ŝn) ≤ bnqc.
In particular, i can be chosen as the last agent. Therefore, the feasibility inequality∑

j∈Nn

xj(�, r�j; ŝn) ≤ bnqc (31)

is satisfied for all � and rn.

It is also straightforward that this mechanism is ex post incentive compatible. The key

idea is, just like in the example in Section 2, that both constraint (30) and the budget set

Bn
i (ŝn−i) are independent of ŝi. Therefore, agent i cannot manipulate the set of choices. For

any realization of (�, r�i), agent i who misreported would still have the same set of choices,

but the mechanism might then choose a suboptimal choice from this set. By integrating out

(�, r�i),

uni
(
GRP[Bn](sn)

∣∣sn) =
1

n!

∑
�

∫
uni
(
zi(�, r�i; sn)

∣∣sn)dr�i (32)

≥ 1

n!

∑
�

∫
uni
(
zi(�, r�i; s′i, sn−i)

∣∣sn)dr�i (33)

= uni
(
GRP[Bn](s′i, s

n
−i)
∣∣sn). (34)

This is the definition of ex post incentive compatibility.

Theorem 1 summarizes the above arguments.

Theorem 1. For any choice of B = {Bn
i }, the generalized random priority mechanism

GRP[B] is feasible and ex post incentive compatible.

5 Main Results: Approximation Theorems

This section presents the main results of the paper. These results show how any ∞-

mechanism (ϕ∞, B∞) for the infinite market can be approximated by an appropriately con-

structed GRP mechanism for large finite markets. The first result, Theorem 2, follows a

“point-wise” approach in the sense that the constructed mechanism approximates ϕ∞ in

each θ. This theorem has a limitation that the approximation is guaranteed only in states
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θ at which B∞ is continuous.11 The second result, Theorem 3, overcomes this limitation

by using an additional step (discretization of the state space Θ) in the construction of the

approximating mechanism.

Theorem 2. Let (ϕ∞, B∞) be an α-feasible incentive-compatible ∞-mechanism such that

the budget rule B∞ is finite. Suppose for a subset ΘC ⊆ Θ with a positive Lebesgue measure

that for all states θ ∈ ΘC, B∞(·) is continuous at θ. Then there exists budget rule {Bn}∞n=2

for finite economies such that for all ε > 0, there exists N > 0 such that for all n ≥ N , the

following hold with a probability more that 1− ε conditional on θ̃ ∈ ΘC:

max
i∈Nn

∣∣uni (GRP[Bn](s̃n)|s̃n)− u∞(ϕ∞(s̃i|θ̃)|s̃i, θ̃)
∣∣ < α + ε, (35)∣∣RevGRP(s̃n)− Rev∞(θ̃)

∣∣ < 2t∗(α + ε) + ε. (36)

Here,

RevGRP(sn) =
1

n

∫
(t1 + · · ·+ tn) dGRP[Bn](sn)(x1, t1, . . . , xn, tn), (37)

Rev∞(θ) =

∫
t∞(s|θ)f(s|θ)ds, (38)

and t∗ = sup({−t : (λ, t) ∈ B∞(Θ)} ∪ {1}) is an upperbound on the payments any agent can

receive from ϕ∞. If ϕ∞ is money-free, {GRP[Bn]}∞n=2 is also money-free.

Proof. See Appendix A.3.

Conditioning on θ̃ ∈ ΘC, Theorem 2 asserts that two approximation conditions, (35) and

(36), hold with a probability almost equal to 1.12 The first condition, (35), gives approx-

imation of payoffs: The payoff that GRP yields to agent i is close to the payoff that ϕ∞

would yield to her if she were a part of the infinite economy with the signal s̃i. The second

condition, (36), states that the revenue from GRP is almost equal to the revenue from ϕ∞,

provided t∗, the largest payment that an agent can receive, is finite. This requirement on t∗
is innocuous in applications in which the mechanism never pays money to agents (and thus

t∗ = 1).

Theorem 2 allows α-feasibility so that the theorem can be used in the proof of the second

result, Theorem 3, where slightly infeasible ∞-mechanisms are potentially considered. The

11A correspondence is continuous at a point if it is both upper and lower hemi-continuous. This notion

of continuity is metricized by the Hausdorff metric, which is indeed used in our proofs.
12Formally, we consider a probability space (Ω,F ,P) on which the random variables s̃1, s̃2, . . ., and θ̃ are

defined. These random variables are infinitely many, but in an n-agent economy only s̃1, . . ., s̃n, and θ̃ are

considered. When we claim that a statement Y occurs with probability more than p, it means that there exists

A ∈ F such that P(A) > p and Y holds whenever ω ∈ A. By doing so, we avoid the measure-theoretical

cumbrance that the set {ω ∈ Ω : Y holds} may not be measurable.
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α-feasibility prevents the approximation errors, α+ ε and 2t∗(α+ ε) + ε, from converging to

0, but these errors disappear as α decreases to 0 (as seen in Theorem 3).

The proof of Theorem 2 is constructive. First, from reports ŝn, the GRP mechanism

constructs a maximum likelihood estimator of the true state θ̃ for each agent i, based only

on the reports of the other agents:

θMLE
i (ŝn−i) ∈ arg max

θ∈Θ

(∏
j∈Nn\{i}

f(sj|θ)
)
. (39)

Next, the mechanism assigns to agent i a budget set

Bn
i (ŝn−i) = B∞(θMLE

i (ŝn−i)), (40)

i.e., the budget set that agent i would have if she were in the infinite economy in state θMLE
i .

In the rest of the proof, we show that this GRP mechanism has the properties stated in the

theorem.

The proof would be simple if we could ignore the feasibility constraint (30) appearing

in the definition of GRP. A rough sketch of the proof is as follows. By the consistency of

maximum likelihood estimators, {θMLE
i }ni=1 uniformly converge to the true state θ̃ as n→∞.

The budget sets {Bn
i (s̃n−i)}ni=1 also uniformly converge to the limit budget B∞(θ̃) because

B∞ is continuous at θ̃. Since Bn
i is close to B∞(θ̃), agent i may choose (zni , t

n
i ) ∈ Bn

i that is

almost the same as ϕ∞(s̃i|θ̃); the latter is what agent i would choose if she were present in the

limit economy with budget set B∞(θ̃). Some agents may find a better choice than (zni , t
n
i ).

However, their fraction must be small, and they cannot significantly increase their utility

levels because all the agents have almost the same preferences as the limit ones, u∞(·|s, θ).
The feasibility constraint (30) adds three difficulties. The first is the rationing effect:

It is unclear how many agents can choose (zni , t
n
i ) ∈ Bn

i , an option very close to the limit

choice, ϕ∞(s̃i|θ̃), even when B∞ has no lotteries. The second is due to the supremum: xj
used in the constraint may significantly differ from the actual assignment. The third is the

independent realization of lotteries. For instance, suppose that each of 2m agents has a 50%

chance of winning one unit of a good whose supply is m. If all the lotteries are independent,

infeasibility is unavoidable; e.g., when m = 1, there is a 25% chance that both agents will

win. However, this infeasibility turns out not to play an important role when m is large:

The probability that the number of winners is less than (1 + ε)m converges to 1 as m→∞.

Flexible Approximation Theorem: Proxy Approach

A limitation of Theorem 2 is that the approximation is guaranteed only in states θ at which

B∞ is continuous. Thus, to be sure that the approximation holds without conditioning, it

is in principle sufficient to show that the budget rule B∞ is continuous almost everywhere.

Proving the latter, however, would require development of a theory of “regular economies”

for ϕ∞, which might enable us to find a “price path” B∞ that is locally continuous except for
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measure-0 “irregular” states θ, similar to the corresponding construction in the Walrasian

equilibrium theory. Moreover, even in the context of Walrasian equilibria, the theory of

regular economies needs certain regularity on the mapping from the parameters to excess

demand functions (Mas-Colell, 1990, 5.8.12 and 5.8.18). It is unclear that such a regularity

condition would always hold for the class of models considered in the current paper.

We take an alternative approach. The second approximation result, Theorem 3, only

needs finiteness of the budget rule B∞. The key idea is discretization: The state space Θ is

partitioned into finite sets {Θk}, each of which has a representative state θPk that serves as a

proxy of all the states θk ∈ Θk. We use B∞(θPk ) instead of B∞(θk), ensuring that the budget

set rule θk 7→ B∞(θPk ) is continuous almost everywhere. As we explain below, the finer the

discretization, the smaller are the approximation errors arising from it. Thus, in the proof,

we shrink the diameter of each Θk shrinks to 0 as n→∞. Formally, we define a proxy rule

as a sequence {P n}∞n=1 of measurable mappings P n : Θ→ Θ such that

m{θ ∈ Θ : P n is not continuous at θ} = 0 (41)

lim
n→∞

sup
θ∈Θ
‖P n(θ)− θ‖ = 0, (42)

where m is the Lebesgue measure.

Theorem 3. Let (ϕ∞, B∞) be a feasible incentive-compatible ∞-mechanism such that B∞

is finite. There exist {Bn}∞n=1 and a proxy rule {P n}∞n=1 such that for all ε > 0, there exists

N > 0 such that for all integers n ≥ N , the inner probability of the following is more than

1− ε:

max
i∈Nn

∣∣uni (GRP[Bn](s̃n)|s̃n)− u∞(ϕ∞(s̃i|θ̃)|s̃i, θP )
∣∣ < ε, (43)∣∣RevGRP(s̃n)− Rev∞(θP )

∣∣ < t∗ε, (44)

where θP = P n(θ̃) and RevGRP, Rev∞, and t∗ are as defined in Theorem 2. If ϕ∞ is money-

free, {GRP[Bn]} is also money-free.

Unlike Theorem 2, Theorem 3 uses the proxy θP = P n(θ̃) instead of the true state θ̃.

Although the proxy utility function u∞(x|s̃i, θP ) can differ from the true one u∞(x|s̃i, θ̃), the

difference ultimately disappears as n goes to ∞.

In the proof, we apply Theorem 2 to descretized versions of the∞-mechanism ϕ∞ instead

of attempting to directly approximate ϕ∞ itself. As above, let P = {Θk} be a partition of

the state space Θ accompanied with representative elements θPk ∈ Θk. From this partition,

we construct a budget rule B∞P that is constant on each Θk:

B∞P (θ) = B∞(θPk ) if θ ∈ Θk. (45)

We consider an ∞-mechanism ϕ∞P that B∞P implements. Indeed, such ϕ∞P is unique up to

measure-0 set signals; Lemma 1 below shows that indifference may occur only in a measure-0
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set. The mechanism ϕ∞P may not be feasible; its feasibility is guaranteed only at θP1 , . . . , θ
P
K .

However, by appropriately specifying the partition {Θk}, the size of its infeasibility can be

arbitrarily small. Recall that Theorem 2 translated the size α of infeasibility into proportional

approximation errors for large n. Therefore, by carefully designing the partition {Θk}, we

can also make the errors in Theorem 2 arbitrarily small.

The above argument is formalized in the proof as follows. We construct a sequence of

partitions P1,P2, . . . so that the size of infeasibility in ϕ∞Pk
disappears as k →∞. We apply

Theorem 2 to each (ϕ∞Pk
, B∞Pk

) and carefully let k depend on n to ensure that approximation

errors in finite economies appropriately disappear in the limit n→∞.

6 Applications

This section presents two applications of Theorem 3: combinatorial auctions (Section 6.2)

and (potentially) multi-unit assignment without monetary transfers (Section 6.3). To eval-

uate mechanisms presented in these sections, we first introduce concepts regarding fairness

and efficiency.

6.1 Fairness and Efficiency

In both applications, we consider the concept of envy-freeness. In finite markets, a feasible

random assignment λ ∈ ∆((X × R)n) is ε-envy-free at sn ∈ Sn if

uni (zi, τi|sn) ≥ uni (zj, τj|sn)− ε (46)

for all i, j ∈ Nn, where (z1, τ1, . . . , zn, τn) are the marginal distribution of λ; i.e., zi and τi
are the distributions of agent i’s assignment xi and payment ti, respectively, in the random

assignment λ. A mechanism {ϕn} is asymptotically envy-free if for all ε > 0, there exists N

such that n ≥ N implies that ϕn(s̃n) is ε-envy-free with a probability more than 1− ε.
In Section 6.2, we consider an environment with monetary transfers, and thus Pareto ef-

ficiency coincides with utilitarian surplus maximization. In finite markets, a feasible random

assignment λ ∈ ∆((X × R)n) is ε-surplus maximizing at sn ∈ Sn if for all feasible random

assignments λ̂ ∈ ∆((X × R)n),

1

n

n∑
i=1

vni (zi|sn) ≥ 1

n

n∑
i=1

vni (ẑi|sn)− ε, (47)

where zi is the marginal distribution of λ regarding agent i’s consumption bundle xi and ẑi
is that of λ̂. A mechanism {ϕn} is asymptotically surplus maximizing if for all ε > 0, there

exists N such that n ≥ N implies that ϕn(s̃n) is ε-surplus maximizing with a probability

more than 1− ε.
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In Section 6.2, in contrast, we consider the situation in which monetary transfers cannot

be used. In this case, it is natural to consider the non-utilitarian Pareto efficiency as below.

A profile of lotteries z1,n ∈ ∆(X)n dominates another profile of lotteries z2,n ∈ ∆(X)n at

sn ∈ Sn if

vni (z1
i |sn) ≥ vni (z2

i |sn) for all i ∈ Nn, and (48)

vni (z1
i |sn) > vni (z2

i |sn) for some i ∈ Nn (49)

A feasible random assignment λ ∈ ∆(Xn) is ε-efficient at sn ∈ Sn if either

(i) max
x∈X

vni (x|sn)− vni (zi|sn) < ε for all i ∈ Ni, or

(ii) there is no random assignment λ̂ ∈ ∆(Xn) such that
∑n

i=1 EX [ẑi] ≤ (1− ε)nq and ẑn

dominates zn at sn,

where zi and ẑi are the i-th marginal distributions of λ and λ̂, respectively. A mechanism

{ϕn} is asymptotically efficient if for all ε > 0, there exists N such that n ≥ N implies that

ϕn(s̃n) is ε-efficient with a probability more than 1− ε.

6.2 Combinatorial Auctions

In this section, we consider a solution concept, Walrasian equilibrium, in the context of

auctions that allocate (potentially) multi-unit objects. We first show the existence of the

equilibrium, together with its desirable properties, efficiency, and envy-freeness. We then ap-

ply Theorem 3 to the equilibrium and show that the mechanism that approximates Walrasian

equilibrium is asymptotically efficient and envy-free.

A Walrasian equilibrium (xW , pW ) for economy λV ∈ ∆(V ) consists of a measurable

mapping xW : V → X and a vector pW = (pW1 , . . . , p
W
L ) ∈ [0,∞)L such that

(i)
∫
xW` (v)dλ(v) ≤ q` for all ` ∈ {1, . . . , L}, and pW` = 0 if the inequality is strict;

(ii) xW (v) ∈ D(pW ; v), where D(p; v) is the demand correspondence defined by

D(p; v) = arg max
x∈X

{
v(x)− p · x

}
.

Our definition of Walrasian equilibria is an extension of Gul and Stacchetti’s (1999) definition

and a special case of Azevedo et al.’s (2012). Gul and Stacchetti define Walrasian equilibria

in finite economies where goods are gross substitutes for all agents. On the other hand,

Azevedo et al. study economies with a continuum of agents and define Walrasian equilibria

in lottery markets as in Hylland and Zeckhauser (1979).

The results of Azevedo et al. (2012) apply to our definition of Walrasian equilibria except

for its existence, but an equilibrium does exist when indifference does not occur almost
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everywhere in the space of preferences V . Let ∆NI(V ) be the set of λV ∈ ∆(V ) such that no

indifference occurs almost everywhere, i.e., λV {v ∈ V : v(x)−v(x′) = c} = 0 for all x, x′ ∈ X
and c ∈ R.

Proposition 1. A Walrasian equilibrium exists for any economy λV ∈ ∆NI(V ). Any such

Walrasian equilibrium is feasible, incentive compatible, surplus-maximizing, and envy-free.

Proof. The existence is shown in Appendix. The surplus-maximization is shown by Azevedo

et al. (2012). The rest of this proposition immediately follows from the definition of Walrasian

equilibria.

Proposition 1 enables us to apply Theorem 3 to Walrasian equilibria: There exist a proxy

rule P = {P n} and a feasible, ex post incentive compatible-mechanism AW = {AWn} such

that AW together with P approximates Walrasian equilibria in the sense of Theorem 3.

Theorem 4. There exists a mechanism that is feasible, ex post incentive-compatible, asymp-

totically surplus maximizing, and asymptotically envy-free.

6.3 Multi-Unit Assignment without Money

We then apply Theorem 3 to (potentially) multi-unit assignment problems without monetary

transfers. In some environments, such as school choice and course allocation, the use of

monetary transfers is considered undesirable (and sometimes illegal). Without such transfers,

it is usually impossible to achieve a surplus-maximizing outcome, even approximately. What

can be achieved in principle is non-utilitarian Pareto efficiency: Hylland and Zeckhauser

(1979) define a mechanism, which we call the HZ mechanism, that achieves efficiency and

envy-freeness.

As shown in Hylland and Zeckhauser (1979), the HZ mechanism is not incentive compat-

ible in finite economies but is incentive compatible in the continuous limit. By Theorem 3,

we can construct a mechanism that is feasible and ex post incentive compatible and whose

outcomes are close to those in the HZ mechanism. Furthermore, we show that the HZ

mechanism can be extended to multi-unit demands and apply Theorem 3 to the extended

mechanism.13

We first generalize the HZ mechanism for an economy with a continuum of agents. Define

the demand correspondence Z(p; v) as the set of solutions of the following utility maximiza-

tion problem:

Z(p; v) = arg max
z∈∆(X)

v(z) subject to
∑
x∈X

pxz(x) ≤ 1, (50)

13More precisely, we can define the extended HZ mechanism only in the limit economy, not in finite

economies, but Theorem 3 guarantees the existence of a finite-economy mechanism that approximates the

extended mechanism.
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where px = p · x. In this problem, an agent maximizes her utility function v(z) subject to

the constraint that her payment must not exceed the budget, i.e., 1. The agent can purchase

probability shares of bundle x at price
∑

` x`p`, the price identical to the total price when

the agent separately buys each good ` at price p`. For each z ∈ ∆(X), let E[z] denote∑
x∈X x · z(x), the expected value of a random variable whose distribution is z. We define a

feasible plan as a measurable mapping z : V → ∆(X) such that
∫
EX [z(v)]dλ(v) ≤ q.

Definition 1. A generalized Hylland-Zeckhauser equilibrium (or simply an HZ equilibrium)

for economy λ ∈ ∆(V ) is a pair (zHZ, pHZ) that consists of a feasible plan zHZ : V → ∆(X)

and price vector pHZ = (pHZ
1 , . . . , pHZ

L ) ∈ [0,∞)L such that

(i) zHZ(v) ∈ Z(pHZ; v); and

(ii)
∫
EX [zHZ(v)]dλ(v) ≤ q and pHZ

` = 0 if the inequality is strict at the `-th dimension.14

We define the generalized HZ mechanism as a ∞-mechanism whose outcome is selected

from HZ equilibrium outcomes. Such a mechanism exists because Proposition 2 ensures that

any distribution on V has at least one HZ equilibrium.

Proposition 2. A generalized Hylland-Zeckhauser equilibrium exists for any λ ∈ ∆(V ).

Proof. See Appendix A.7.

This generalized solution concept inherits two desirable properties, efficiency and envy-

freeness, which the original HZ equilibrium possesses. We say that a feasible plan z is efficient

at λV ∈ ∆(V ) if λV {v : v(z′(v)) > v(z(v))} > 0 implies λV {v : v(z′(v)) < v(z(v))} > 0 for

all feasible plans z′. A feasible plan z is envy-free if v(z(v)) ≥ v(z(v̂)) for all v, v̂ ∈ V .

Proposition 3. Let (zHZ, pHZ) be an HZ equilibrium for economy λV ∈ ∆(V ). Then,

(i) zHZ is envy-free;

(ii) zHZ is efficient at λV if λV {v : # arg maxx∈X v(x) = 1} = 1.15

Proof. See Appendix A.8.

In our environment, the assumption of the second statement is always satisfied. This fact

becomes a special case of the following result, corresponding to the case B = X × {0}.

Lemma 1. For all B ∈ Bf and θ ∈ Θ, the set

I(B, θ) =
{
s ∈ S : u∞(y|s, θ) = u∞(y′|s, θ) for some y, y′ ∈ B, y 6= y′

}
(51)

has Lebesgue measure 0.

14As in Budish et al. (2012), we need the latter half of the condition (ii) to obtain the efficiency of HZ

equilibria.
15This requirement on utility functions also appears in Budish et al. (2012).
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Proof. See Appendix.

The above lemma is also useful to establish the fact that an HZ equilibrium is indeed

implementable by a finite budget set. Recall that in Theorem 3 the budget rule B∞ was

assumed to be finite. Even though a budget set in the HZ market consists of a continuum

of choices, it possesses only finitely many extreme points as a compact set represented by a

linear inequality system: ∑
x∈X

z(x) = 1 (52)∑
x∈X

pxz(x) ≤ 1 (px = p · x) (53)

0 ≤ z(x) ≤ 1 for all x ∈ X. (54)

Therefore, by Lemma 1, all the agents except for those in a measure-0 set have no indifference

between extreme points and thus never choose a non-extreme point.

From these observations, we can apply Theorem 3 to the infinite-economy version of the

HZ mechanism.

Theorem 5. There exists a money-free mechanism that is feasible, ex post incentive com-

patible, asymptotically efficient, and asymptotically envy-free.

Proof. See Appendix A.5.

7 Discussion

In the present paper, we developed a technique for approximating continuous-market mech-

anisms by finite-market mechanisms. We generalized the random priority mechanism for

our approximation method, showing that the generalization, which we called the generalized

random priority mechanism with budgets (GRP), is always feasible and ex post incentive

compatible. Further, we have established that a broad class of continuous-market mech-

anisms can be approximated by GRP with appropriately designed budget sets whenever

they satisfy the requirements for feasibility and incentive compatibility in addition to a mild

finiteness condition. We also applied our approximation technique to multi-unit auctions

and allocation problems without money.

Our approximation results confirm a direct connection between continuous- and finite-

market phenomena in the context of mechanism design. Continuous-market results are often

considered to be “benchmarks” that may or may not be approximately applicable to finite

markets. Such continuous-market results are indeed more than benchmarks according to our

findings: Something achievable in continuous markets is also approximately achievable in

large finite markets.
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A Proofs

This appendix provides proofs not presented in the main body of the paper. Before the

proofs, we introduce several notations for convenience. When a measure λ depends on some

variable α, we write λ(A|α) to denote λ(α)(A). Define

µ(T |θ) =

∫
T

f(s|θ)ds for measurable T ⊆ S. (55)

Let µV (θ) be the image measure of µ(θ) with respect to the mapping si 7→ v∞(·|si, θ):

µV (W |θ) = µ({s ∈ S : v∞(·|s, θ) ∈ W}|θ) (56)

for measurable W ⊆ V . Let µnV (θ) be the corresponding product measure:

µnV (W1 × · · · ×Wn|θ) = µV (W1) · · ·µV (Wn).

A.1 Proof of Lemma 1

It suffices to show that J = {s ∈ S : u∞(z|s, θ) = u∞(z′|s, θ)} has measure 0 in µ(θ), for all

z, z′ ∈ B such that z 6= z′. Define g(s) = u∞(z|s, θ)− u∞(z′|s, θ). Thanks to Assumption 1,

g−1(0) is either the empty set or a (d(S)−1)-dimensional manifold; in either case its Lebesgue

measure in the d(S)-dimensional space S is 0. Therefore, µ(J |θ) = µ(g−1(0)|θ) = 0.

A.2 Utility Convergence Lemma

We prove a lemma that will be used in subsequent proofs. The lemma asserts a statistical

fact that finite-economy utility functions converge to the corresponding infinite economy ones

as n goes to infinity, even if one single signal can be erroneous but believed to be correct.

Definition 2. ωR ∈ Ω is ε-regular (in preferences) at n if∣∣vni (x|s′j, s
R,n
−j )− v∞(x|sRi , θR)

∣∣ < ε

for all x ∈ X, i, j ∈ Nn, and s′j ∈ S, where θR = θ̃(ωR) and sRk = s̃k(ω
R).

Lemma 2. For all ε > 0, the inner probability measure of the set {ωR ∈ Ω : ωR is ε-regular

at n} converges to 1 as n→∞.

Proof of Lemma 2. We define ε-regularity in beliefs and establish that the following state-

ment is sufficient to prove this lemma:

The inner probability of
{
ωR ∈ Ω : ωR is ε-regular in beliefs at n

}
converges to 1 as n→∞.

(57)

Let P ε(θ, sn) = P{‖θ̃ − θ‖ < ε|s̃n = sn} be the conditional probability that the true state is

ε close to θ given the observed signal profile is (believed to be) sn.
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Definition 3. ωR ∈ Ω is a ε-regular in beliefs at n if

P ε
(
θR, (ŝj, s

R,n
−j )

)
> 1− ε

with θR = θ̃(ωR) and sR,n−j = s̃n−j(ω
R), for all j ∈ {1, . . . , n} and ŝj ∈ S.

That is, agent i assigns a probability more than 1− ε to the ε-neighborhood of the true

state θR even when some agent j’s report, which agent i believes is correct, is erroneous.16

Lemma 3 establish the link between the two regularity concepts.

Lemma 3. For all εp > 0, there exists εb > 0 such that ωR ∈ Ω is εb-regular in beliefs only

if it is εp-regular in preferences.

Proof. Since v∞ is uniformly continuous, for any εp > 0, there exists εb ∈ (0, εp/3) such that

‖θ − θ′‖ < εb implies ‖v∞(x|si, θ) − v∞(x|si, θ′)‖ < εp for all x ∈ X and si ∈ S. Suppose

that ωR is εb-regular in beliefs. Then, for all x ∈ X and ŝj ∈ S,∣∣vni (x|ŝj, sR,n−j )− v∞(x|sRi , θR)
∣∣

=

∣∣∣∣∫ [v∞(x|sRi , θ)− v∞
(
x|sRi , θR)

]
f(θ|ŝj, sR,n−j ) dθ

∣∣∣∣
≤
∫ ∣∣v∞(x|sRi , θ)− v∞(x

∣∣sRi , θR)
∣∣ f(θ|ŝj, sR,n−j ) dθ

≤
∫
|θ−θR|<εb

εp f(θ|ŝj, sR,n−j ) dθ +

∫
|θ−θR|≥εb

2 f(θ|ŝj, sR,n−j ) dθ

≤ εp + 2εb < εp.

That is, ωR is εp-regular in preferences.

Thus it suffices to show condition (57). Its proof consists of five steps: Steps 1 and 2 are

used in Step 3, and Steps 3 and 4 are used in Step 5.

Step 1: The inverse of µn(θ) is uniformly continuous. Since µn is a continuous injection

from the compact space Θ to the Polish space ∆(S), its inverse (µn)−1 is a continuous

mapping from µn(Θ) to Θ (see, e.g., Munkres, 2000, Theorem 26.6). Furthermore, (µn)−1 is

uniformly continuous because its domain µ(Θ) is compact.

16Readers should carefully distinguish θ̃, the true state for the agents, from θR, the state that we, as

modelers, know is the true state. The agents never know that θR is the true state, but they indeed assign a

high probability on the neighborhood of θR without knowing what is θR.
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Step 2: For all α, β > 0, P{Qα(s̃n) ≥ 1 − β} converges to 1 as n goes to ∞. Here,

Qα(sn) is the conditional probability that the true signal distribution µ(θ) and the empirical

distribution µemp(sn) =
∑n

i=1 δsi/n (δsi is the Dirac measure) are ε-close, given that the

realized signal profile is sn.17 The distance is measured by the Lévy–Prokhorov metric dLP,

which is consistent with the weak convergence of measures. Formally, Qα(sn) is defined by

Qα(sn) = P
(
dLP(µ(θ̃), µemp(sn)) < α

∣∣s̃n = sn
)
.

This step is shown by the following calculations:

1− P
{
Qα(s̃n) ≥ 1− β

}
= β−1 · β · P

{
1−Qα(s̃n) > β

}
≤ β−1 · E[1−Qα(s̃n)]

= β−1 · P
{
dLP(µ(θ̃), µemp(s̃n)) ≥ α

}
.

The last term converges to 0 as n→∞ because empirical distributions weakly converge to

the true distribution by the Glivenko–Cantelli theorem.

Step 3: For all α, β > 0, P{Pα(θ̃, s̃n) ≥ 1−β} converges to 1 as n goes to∞. Fix ε∗ > 0. By

Step 1, there exists δ > 0 such that dLP(µ(θ), µ(θ′)) ≤ 2δ implies ‖θ−θ′‖ ≤ α for all θ, θ′ ∈ Θ.

By Step 2, there exists N such that n ≥ N implies that the event En = {Qδ(s̃n) ≥ 1 − β
and dLP(µ(θ̃), µemp(s̃n)) < δ} has a probability more than 1− ε∗. Let ωR ∈ En, θR = θ̃(ωR)

and sR,n = s̃n(ωR). By the above arguments, we obtain

Pα(θR, sR,n) = P
(∥∥θ̃ − θR∥∥ ≤ α

∣∣∣s̃n = sR,n
)

≥ P
(
dLP

(
µn(θ̃), µn(θR)

)
≤ 2δ

∣∣∣s̃n = sR,n
)

≥ P
(
dLP(µ(θ̃), µemp(sR,n)) ≤ δ

∣∣∣s̃n = sR,n
)

= P
(
dLP(µ(θ̃), µemp(s̃n)) ≤ δ

∣∣∣s̃n = sR,n
)

≥ Qδ(sR,n) ≥ 1− β.

Step 4: 1 − P ε(θ, (ŝj, s
n
−j)) ≤ (1 − P ε(θ, ŝn))M/m for all n ∈ N, j ∈ Nn, θ ∈ Θ, sn ∈ Sn,

and ŝj ∈ S. Here, M and m are the maximum and minimum of the ratio f(s|θ)/f(s′|θ′)
over s, s′ ∈ S and θ, θ′ ∈ Θ. The probability 1− P ε(θ, (ŝj, s

n
−j)) is evaluated from above by

Bayes’ law:

1− P ε(θ, (ŝj, s
n
−j)) ≤

AM

AM +Bm
≤ A

B
· M
m
≤ (1− P ε(sn)) · M

m
,

17A Dirac measure δx is a probability measure such that δx({x}) = 1.
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where

A =

∫
‖θ−θ′‖≥ε

f(θ)f(s1|θ) · · · f(sn|θ)dθ′

B =

∫
‖θ−θ′‖<ε

f(θ)f(s1|θ) · · · f(sn|θ)dθ′.

Step 5. Let ε > 0. By Step 4, P ε(θ̃, s̃n) ≥ 1− (m/M)ε implies

P ε(θ̃, (ŝj, s̃
n)) ≥ 1− (1− P ε(θ̃, s̃n)) · M

m
≥ 1− ε.

Hence, P{P ε(θ̃, s̃n) ≥ 1−(m/M)ε} is at most as high as P∗{P ε(θ̃, (ŝj, s̃
n)) ≥ 1−ε}, the inner

probability of ε-regularity in beliefs. From Step 3, we know that P{P ε(θ̃, s̃n) ≥ 1− (m/M)ε}
converges to 1 as n goes to ∞ and therefore that the inner probability of ε-regularity in

beliefs also converges to 1; this is the condition (57).

A.3 Proof of Theorems 2

In this proof, we use Lemma 1 (Sections 6.3 and A.1) and Lemma 2 (Section A.2). Let

P = P{θ̃ ∈ ΘC}. Take arbitrary ε > 0 and let

ε′ =
P min{1, q∗}
2x̄(|X|+ 10)

· ε (58)

where q∗ = min{q1, . . . , qL}.

Step 1: Application of Lemma 2.

By Lemma 2, there exists N1 such that n ≥ N1 implies that P∗(En
1 ) > 1− ε′, where

En
1 =

{∣∣uni (x|s̃n)− u∞(x|s̃i, θ̃)
∣∣ < ε′ for all i ∈ Nn and x ∈ X

}
. (59)

Step 2: Optimal choices and their robustness.

We first introduce the demand correspondences for finite and infinite economies:

Y n
i (B|sn) = arg max

(z,t)∈B
uni (z, t|sn) (60)

Y ∞(B|s, θ) = arg max
(z,t)∈B

u∞(z, t|s, θ) (61)

for each B ∈ Bf , sn ∈ Sn, s ∈ S, and θ ∈ Θ. In addition, define the following “buffered”

demand correspondence:

Y n
i (εB, B|sn) =

⋃
dH(B,B′)≤εB , i 6=j, ŝj∈S

Y n
i (B′|ŝj, sn−j), (62)
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where dH is the Hausdorff metric, which metricize the continuity of correspondences; in

particular, B : Θ → Bf is both upper- and lower-hemicontinuous at θ if and only if

limθ′→θ dH(B(θ), B(θ′)) = 0 (see, e.g., Ok, 2007).

The next lemma claims that the fraction Mn of the agents whose finite-economy and

infinite-economy choices are δ-close is more than 1 − ε with probability 1, as n → ∞. Its

proof is shown later (Section A.3.1). For its formal statement, we endow ∆(X)×R with the

following L∞-norm:

‖(z, t)− (z′, t′)‖∞ = max({|z(x)− z′(x)| : x ∈ X} ∪ {|t− t′|}). (63)

Lemma 4. Suppose that (ϕ∞, B∞) is an incentive compatible ∞-mechanism. For all ε > 0,

there exists δ ∈ (0, ε) such that

lim
n→∞

P∗
{
Mn(δ; s̃n, θ̃) ≥ 1− ε

}
= 1, (64)

where

Mn(δ; s̃n, θ̃) =
1

n
·#
{
i ∈ Nn : Y ∞(B∞(θ̃)|s̃i, θ̃) = {y(∞)

i } and∥∥y(∞)
i − y(n)

i

∥∥
∞ < δ for all y

(n)
i ∈ Y n

i (δ, B∞(θ̃)|s̃n)
}
. (65)

By Lemma 4, there exist εB ∈ (0, ε′) and N2 > N1 such that n ≥ N2 implies that

En
2 =

{
Mn(εB; s̃n, θ̃) ≥ 1− ε′

}
(66)

has a inner probability more than 1 − ε′. Notice that in the definition of Mn, the buffered

version of Y n is used. That is, in the definition, each agent i in finite economies may face a

budget set that is slightly different from the infinite-economy budget set B∞(θ̃) and another

agent j’s signal sj can be inaccurate.

Step 3: Maximum liklihood estimation of the infinite-economy budget rule.

Let θMLE(sn) be the maximum likelihood estimator (MLE) and define

Bn
i (sn−i) = B∞(θMLE(sn−i)). (67)

Note that the following regularity conditions are satisfied:

(i) The state space Θ is compact.

(ii) The conditional density f(si|θ) is continuous as a function of (si, θ).

(iii) maxsi,θ | log f(si|θ)| is finite.

(iv) For all θ 6= θ′, there exists si ∈ S such that f(si|θ) 6= f(si|θ′).
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We thus can apply the techniques of Amemiya (1985, Theorem 4.1.1 and Section 4.2) and

obtain the following:

(i) L(θ̂|θ) =
∫
S

log f(si|θ̂) f(si|θ) dsi is a continuous function of θ̂ with a unique maximizer.

(ii) θMLE(s̃n) converges in probability to θ̃ as n goes to ∞.

Since the contribution of each log f(si|θ̂) to the mean n−1
∑

i log f(si|θ̂) is bounded by

maxsi,θ |f(si|θ)|/n, which disappears in the limit, we have

plim
n→∞

max
i

∥∥∥θMLE(s̃n−i)− θ̃
∥∥∥ = 0.

By Lemma 5 below, this implies that there exists N3 > N2 such that for all n ≥ N3, the

inner probability P∗(En
3 ) is greater than P − ε′, where

En
3 =

{
max
i∈Nn

dH(B∞(θ̃), Bn
i (s̃n−i)) < εB

}
∩
{
θ̃ ∈ ΘC

}
.

Lemma 5. Let X be a compact subset of Rd and (Y, d) a compact metric space. Consider a

mapping g : X → Y such that g is continuous at every x ∈ X ′, where X ′ ⊆ X is a Lebesgue

measurable set with a positive Lebesgue measure. For all ε > 0, there exists δ > 0 and a

compact set X∗ ⊆ X such that

(i) m(X∗) ≥ (1− ε)m(X ′) and

(ii) d(g(x∗), g(x)) < ε whenever ‖x∗ − x‖ < δ for all x∗ ∈ X∗ and x ∈ X.

Proof. Since the Lebesgue measure is regular, there exists a compact set X∗ ⊆ X ′ such that

m(X∗) > (1− ε)m(X ′). For each x ∈ X∗, let

δx =
1

2
inf
{
‖xk − x′‖ : d(g(xk), g(x′)) ≥ ε/2

}
, (68)

which must be positive by the definition of continuity. Let U(δ, x) = {x′ ∈ X : ‖x−x′‖ < δ}
be the δ-open neighborhood of x. Since X∗ is compact, an open covering {U(δx, x)}x∈X∗ of

X∗ has a finite sub-covering {U(δxk , xk)}Kk=1.

Let δ = mink δxk , and suppose that x∗ ∈ X∗, x ∈ X, and ‖x∗ − x‖ < δ. Since

{U(δxk , xk)}Kk=1 covers X∗, there exists k such that ‖x∗−xk‖ < δxk . This implies ‖x−xk‖ ≤
‖x− x∗‖+ ‖x∗ − xk‖ < 2δxk , and thus

d(g(x∗), g(x)) ≤ d(g(x∗), g(xk)) + d(g(xk), g(x)) < ε

by (68).
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Step 4: Approximate feasibility.

We now concretely implement lotteries by the following method that is consistent with the

last step of GRP (Step (iii)(b)): For each zi ∈ ∆(X), define Lzi(·) as a function from (0, 1]

to X such that

Lzi(ri) = x(K) if
∑

k<K zi(x
(k)) < ri ≤

∑
k≤K zi(x

(k)), (69)

where x(1), . . . , x(|X|) are the elements of X sorted in the lexicographic order. Using the

operator L, we define W n
i and eni : W n

i is a function of randomization device ri that serves

as an upperbound of agent i’s consumption and eni is the expected value of W n
i . Formally,

W n
i (ri; εB, B|sn) = sup

{
Lzi(ri) : (zi, ti) ∈ Y n

i (εB, B|sn)
}

(70)

eni (εB, B|sn) =

∫ 1

0

W n
i (ri|εB, B; sn)dri. (71)

The supremum is taken for each good `. Recall Lzi(ri) ∈ RL.

We then find sufficiently large n with which allocation is approximately feasible even in

the worst case. Recall that ϕ∞ is α-feasible. Thus, by the weak law of large numbers, there

exists N4 > N3 such that P∗(En
4 ) > 1− ε′ for all n ≥ N4, where

En
4 =

{
1

n

n∑
i=1

EX
[
z∞(s̃i|θ̃)

]
≤ (1 + α + ε′)q

}

∩

{∣∣∣∣ 1n
n∑
i=1

t∞(s̃i|θ̃)−
∫
t∞(s|θ̃)f(s|θ̃)ds

∣∣∣∣ < ε′

}
(72)

and (z∞, t∞) = ϕ∞. Since ϕ∞(s̃i|θ̃) = Y ∞(B∞(θ̃)|s̃i, θ̃) almost surely by Lemma 1, the

following holds almost surely as well conditional on En = En
1 ∩ En

2 ∩ En
3 ∩ En

4 :

1

n

n∑
i=1

eni (εB, B
∞(θ̃)|s̃n) ≤ 1

n

n∑
i=1

EX
[
z∞(s̃i|θ̃)

]
+ 2εB|X|2x̄ (73)

≤ (1 + α + 3ε′)q, (74)

where x̄ is a L-dimensional vector whose elements are all x̄. In the first inequality, we used

the fact that

eni − EX
[
z∞(s̃i|θ̃)

]
≤ m

{
ri : W n

i (ri) 6= L[z∞(s̃i|θ̃)](ri)
}

x̄

≤
∑
x∈X

2εB|X|x̄ ≤ 2εB|X|2x̄.
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Step 5: Availability of optimal choices.

In this step, we show that agents do not suffer from the feasibility constraint with probability

approximately equal to 1 for sufficiently large n.

Let Pn be the set of priorities (strict total orders) on Nn, and let P(i,m) be the set of

the priorities in which agent i has the m-th priority. We consider the case of m ≤ Mn ≡
n/(1+α+4ε′). Let Qn be the probability measure that represents the probabilistic structure

on (�, r1, . . . , rn); i.e., Qn is the probability measure on P × [0, 1]n uniquely determined by

the following independence condition:

Qn(P × T1 × · · · × Tn) =
#P

n!
·m(T1) · · ·m(Tn) (75)

for all P ⊆ P and Lebesgue measurable subsets T1, . . . , Tn ⊆ [0, 1]. Let Ai,m denote the

event {� ∈ P(i,m)}.
In this step, we consider the probability space induced by Qn in order to prove the

following statement with fixed ω ∈ En
1 ∩ En

3 : There exists N4 > N3,2 such that for all i and

n ≥ N4, the inner probability of

x̄ +
∑
j�i

max
s′i∈S

xj(�, rn; s′i, s̃
n
−i) ≥ nq (76)

conditional on (
⋃
m≤Mn

Ai,m) is more than 1 − ε. Recall that the measure is Qn and ω is

fixed so that � and ri are random variables while s̃i and θ̃ are deterministic. To show (76),

we instead consider the following condition:

x̄ +
∑
j�i

W n
j (rj; εB, B

∞(θ̃)|s̃n) ≥ nq. (77)

This condition implies (76) because

max
s′i∈S

xj(�, rn; s′i, s̃
n
−i) ≤ W n

j (rj; εB, B
∞(θ̃)|s̃n)

as long as the condition (76) is satisfied for all i � j. We simply write W n
j (rj) to denote

W n
j (rj; εB, B

∞(θ̃)|s̃n).

To show (77), we apply Chebyshev’s inequality to the summation
∑

j�iW
n
j (rj) =

∑
j 6=i hjW

n
j (rj),

where hj = 1{j � i}. To this end, we evaluate the conditional mean and variance of W n
j (rj)

as below. First, we evaluate an upper bound of the conditional mean from above:

EQn

[∑
j�i

W n
j (rj)

∣∣∣∣Ai,m] =
∑
j 6=i

EQn[
hj
∣∣Ai,m] · enj (78)

=
m− 1

n− 1

∑
j 6=i

enj (79)

≤ m

n
(1 + α + 3ε′)nq (80)

≤ 1 + α + 3ε′

1 + α + 4ε′
nq (81)
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by the independence of (�, r1, . . . , rn) and then (74). Second, the conditional variance in

each dimension ` is bounded above by nx̄2:

VarQ
n

[∑
j�i

W n
j,`(rj)

∣∣∣∣Ai,m] =
∑

j,k∈Nn\{i}

CovQn(
hje

n
j,`, hke

n
k,`

∣∣Ai,m) (82)

≤ nx̄2 +
∑

j,k∈Nn\{i}, j 6=k

CovQn(
hje

n
j,`, hke

n
k,`

∣∣Ai,m) (83)

≤ nx̄2. (84)

To derive the last inequality, we use the fact CovQn

(hje
n
j,`, hke

n
k,`

∣∣Ai,m) ≤ 0.

The covariance is calculated as follows. (To make notations simple, we omit the symbols

Qn and Ai,m from the expectation and covariance operators, but in this paragraph we keep

considering the probability space Qn conditional on Ai,m.)

Cov(hje
n
j,`, hke

n
k,`) = E

[(
∆hje

n
j,` +∆enj,`E[hj]

)(
∆hke

n
k,` +∆enk,`E[hk]

)]
(85)

= Cov(hj, hk)E[enj,`]E[enj,`], (86)

where ∆hj = hj − E[hj] and ∆enj,` = enj,` − E[enj,`]. Further, Cov(hj, hk) is negative because

Cov(hj, hk) =
(m− 1)(m− 2)

(n− 1)(n− 2)
·
(

1− m− 1

n− 1

)2

+
(n−m)(n−m− 1)

(n− 1)(n− 2)
·
(
m− 1

n− 1

)2

− 2(m− 1)(n−m)

(n− 1)(n− 2)
·
(
m− 1

n− 1

)(
1− m− 1

n− 1

)
(87)

=
1

(n− 1)3(n− 2)
·
[
(m− 1)(m− 2) · (n−m)2

+ (n−m)(n−m− 1) · (m− 1)2

− 2(m− 1)(n−m) · (m− 1)(n−m)
]

(88)

= −(m− 1)(n−m)

(n− 1)2(n− 2)
≤ 0, (89)

From the above facts, there exists N4 > max{N3,2, 1/ε
′} such that for all n ≥ N4,

ω ∈ En
1 ∩En

3 , i ∈ Nn, and m ≤Mn, there exists a measurable set Cn
i,m(ω) ⊆ P(i,m)× [0, 1]n

such that

Qn(Cn
i,m(ω)|Ai,m) > 1− ε′ (90)

and (77) holds whenever (�, rn) ∈ Cn
i,m(ω). Let

Cn
i (ω) =

⋃
m≤Mn

Cn
i,m(ω). (91)
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Since Qn(Ai,m) = 1/n for each m,

Qn(Cn
i (ω)) > (1− ε′) · 1− 1/n

1 + α + 4ε′
> 1− (α + 6ε′). (92)

Step 6: Approximation inequalities.

We consider En = En
1 ∩ · · ·∩En

4 , whose conditional inner probability P∗(En|θ̃ ∈ ΘC) is more

than 1− ε. Fix ω ∈ En. We first evaluate agent i’s utility level from below:

uni (GRPi(s̃
n)|s̃n) ≥ uni (Y n

i (Bn
i (s̃n−i)|s̃n)|s̃n)− (α + 6ε′) (by Step 5)

≥ uni (ϕ∞(s̃i|θ̃)|s̃n)− [α + (7 + |X|)ε′] (by Step 3)

≥ u∞(ϕ∞(s̃i|θ̃)|s̃i, θ̃)− [α + (8 + |X|)ε′] (by Step 1).

In the opposite direction, we have

u∞(ϕ∞(s̃i|θ̃)|s̃i, θ̃) ≥ u∞(GRPi(s̃
n)|s̃i, θ̃)− (1 + |X|)ε′ (by Steps 3)

≥ uni (GRPi(s̃
n)|s̃n)− (2 + |X|)ε′ (by Steps 1).

These two inequalities provides the following expression:

max
i
|uni (GRPi(s̃

n)|s̃n)− u∞(ϕ∞(s̃i|θ̃)|s̃i, θ̃)| < α + ε.

In terms of revenues, we have

RevGRP(s̃n) ≥ 1

n

∑
i

[
(1− α− 6ε′)ϕ∞(s̃i|θ̃)− εB − t∗(α + 6ε′)

]
(by Steps 3 and 5)

≥ (1− α− 6ε′)
(

Rev∞(θ̃)− ε′
)
− εB − t∗(α + 6ε′) (by Step 4)

≥ Rev∞(θ̃)− t∗(α + 6ε′)− εB − t∗(α + ε)

> Rev∞(θ̃)− 2t∗(α + ε)− ε.

Similarly,

RevGRP(s̃n) ≤ 1

n

∑
i

[
(1− α− 6ε′)ϕ∞(s̃i|θ̃) + εB + (α + 6ε′)

]
≤
(

Rev∞(θ̃) + ε′
)

+ εB + (α + 6ε′)

> Rev∞(θ̃) + α + ε.

Therefore,

|Rev∞(θ̃)− RevGRP(s̃n)| < max{2t∗, 1}(α + ε)− ε.
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A.3.1 Proof of Lemma 4

Take arbitrarily small ε > 0. We first introduce notations. Let A = 6 + 2|X|. Define an

upper semi-continuous mapping g : B → (0, 1] by

g(B) =

2 if |B| = 1

minz,z′∈B, z 6=z′ d(z, z′) otherwise
(93)

This mapping g(B) represents the minimum distance between two different elements in B.

Let V = RX as in Section 6.2. For each ε′ ≥ 0, B ∈ Bf , and z ∈ B, let

Vz(ε
′, B) =

{
v ∈ V : uv(z) > uv(z

′) + ε′ for all z′ ∈ B \ {z}
}
, (94)

V (ε′, B) =
⋃

z∈B
Vz(ε

′, B), (95)

where uv(x, t) = v(x)− t. By Lemma 1 and the Lebesgue dominated convergence theorem,

lim
ε′↘0

µV (V (ε′, B)|θ) = 1 (96)

for all θ ∈ Θ and B ∈ Bf .
Note that the (inner) probability of the following converges to 1 as δ → 0:

(i) µV (V (2Aδ,B∞)|θ̃) > 1− ε/2 (by (96)).

(ii) g(B∞(θ̃)) ≥ 2δ (by g > 0).

Therefore, there exist δ∗ ∈ (0, ε) such that the inner probability of A1 = {(i) and (ii) hold

with δ = δ∗} is more than 1 − ε/3. With this δ∗, by Lemma 2, there exists N1 such that

n ≥ N1 implies that the inner probability of An2 = {ω is δ-regular} is more than 1 − ε/3.

Further, by the weak law of large numbers, we can find sufficiently large N2 > N1 such that

n ≥ N2 implies the inner probability of

An3 =

{
1

n

∑n

i=1
1
{
v∞(·|s̃i, θ̃) ∈ V

(
Aδ∗, B∞(θ̃)

)}
≥ µV

(
V (Aδ∗, B∞)

∣∣θ̃)− ε

2

}
. (97)

is more than 1− ε/3.

At last, we show that for all n ≥ N the following holds in the event An = A1 ∩An2 ∩An3 :

If i ∈ Nn is such that v∞(·|s̃i, θ̃) ∈ Vz(Aδ
∗, B∞), then Y ∞(B∞(θ̃)|s̃i, θ̃) is a

singleton {y(∞)
i } and all y

(n)
i ∈ Y n

i (δ∗, B∞(θ̃)|s̃n) are such that ‖y(∞)
i −y(n)

i ‖∞ < δ.

Assume ω ∈ An and consider i ∈ Nn such that v∞(·|s̃i, θ̃) ∈ Vz(Aδ,B∞). On one hand, it

is clear from the choice of i that u∞(·|s̃i, θ̃) has a unique maximizer y
(∞)
i in B∞(θ̃); hence
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Z∞(B∞(θ̃)|s̃i, θ̃) = {y(∞)
i }. On the other hand, for all z′ ∈ B∞(θ̃), zδ, z

′
δ ∈ ∆(X) × R such

that d(z, zδ) ≤ δ and d(z′, z′δ) ≤ δ,

uni (zδ|s̃n) ≥ u∞(zδ|s̃i, θ̃)− δ (98)

≥ u∞(z|s̃i, θ̃)− (1 + |X|)δ (99)

> u∞(z′|s̃i, θ̃) + (1 + |X|)δ (100)

≥ u∞(z′δ|s̃i, θ̃) + δ (101)

≥ uni (z′δ|s̃n). (102)

Therefore, if z∗ ∈ Zn
i (δ, B∞|s̃n) then d(z∗, z) ≤ δ.

A.4 Proof of Theorem 3

For each θ̄ ∈ Θ, define g(·|θ̄) : Θ→ RL by

Ψθ̄(θ) =
∑

z∈B∞(θ)

h(z)ψθ̄,z(θ), (103)

where h(λ, t) =
∑

x∈X xλ(x) and

ψθ̄,z(θ) = µ

(⋂
z 6=z′∈B∞(θ̄)

{
s : u∞(z|s, θ) > u∞(z′|s, θ)

}∣∣∣∣θ) . (104)

Note that ψ is continuous in θ because

lim
θ→θ∗

ψθ̄,z(θ) = lim
θ→θ∗

∫ ∏
z 6=z′∈B∞(θ̄)

1
{
u∞(z|s, θ) > u∞(z′|s, θ)

}
f(s|θ)ds (105)

=

∫ ∏
z 6=z′∈B∞(θ̄)

lim
θ→θ∗

1
{
u∞(z|s, θ) > u∞(z′|s, θ)

}
· lim
θ→θ∗

f(s|θ) · ds (106)

=

∫ ∏
z 6=z′∈B∞(θ̄)

1
{
u∞(z|s, θ∗) > u∞(z′|s, θ∗)

}
f(s|θ∗)ds (107)

= ψθ̄,z(θ
∗). (108)

Hence, Ψθ̄(θ) is continuous in θ.

Let

U(α, θ̄) = Ψ−1
θ̄

({y ∈ RL : y ≤ (1 + α)q}) ∩Bα(θ̄), (109)

which is an open set containing θ̄. For each m = 1, 2, . . ., there exists a finite set {θ̄m1 , . . . ,
θ̄mK(m)} ⊆ Θ such that Θ =

⋃K(m)
k=1 U(1/m, θ̄mk ), because {U(1/m, θ)}θ∈Θ is an open covering

of the compact set Θ. For each m, define θ̄m : Θ → Θ by θ̄m(θ) = θ̄mk(θ), where k(θ) is the

smallest k such that θ ∈ U(1/m, θ̄mk ).
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For eachm, construct an incentive compatible∞-mechanism (ϕ∞m , B
∞
m ) as follows: B∞m (θ) =

B∞(θm(θ)) and ϕ(s|θ) ∈ Z(B∞m |s, θ). By construction, Ψθ̄m(θ)(θ) ≤ (1 + α)q, which means

(ϕ∞m , B
∞
m ) is (1/m)-feasible.

For each m, let {ϕnm} be the mechanism approximating (ϕ∞m , B
∞
m ) as constructed in

Theorem 2. Starting from (m1, N1) = (1, 1), we recursively construct mk > mk−1 and

Nk > Nk−1 so that for all n > Nk, ϕ
n,mk satisfies all four conditions (i)-(iv) with ε = 1/k.

Finally define {ϕn} by ϕn = ϕn,mk(n) where k(n) is the smallest k such that n > Nk.

A.5 Proof of Theorems 4 and 5

The proofs for Theorems 4 and 5 are almost identical. We first present the proof of Theorem

5, and then we discuss how to modify the proof to show Theorem 4.

A.5.1 Proof of Theorem 5

Let {ϕn} be the GRP used in the proof of Theorem 3, which clearly is asymptotically envy-

free by construction. We establish its asymptotic efficiency. Let ε′ = min{ε/2, ε·q∗/(10x̄), 1},
where q∗ = min` q`.

Step 1: Approximation of distribution. Recall supθ ‖P n(θ)− θ‖ → 0 as n→∞. Also note

that f is uniformly continuous because it is continuous on a compact domain. From these

facts, we can find sufficiently large N1 such that for all n ≥ N1,

|f(s|θ)− f(s|θP )| < ε′

x̄(1 + m(S))
(110)

for all s ∈ S, θP ∈ P n(Θ), and θ ∈ P n,−1(θP ).

Step 2: “Irregular” signals are unlikely. Find sufficiently small εv ∈ (0, 1) such that µ(T 3(θP )|θP ) <

ε′ for all θP ∈ P n(Θ), where

T 1(θP ) =
{
s ∈ S : max

x
v∞(x|s, θP ) > v∞(ϕ∞(s|θP )|s, θP ) + εv

}
, (111)

T 2(θP ) =
{
s ∈ S : max

x
v∞(x|s, θP ) = v∞(ϕ∞(s|θP )|s, θP ) > max

x 6=x∗(s)
v∞(x|s, θP ) + εv

}
,

(112)

and T 3(θP ) = S \ (T 1(θP ) ∪ T 2(θP )). This implies

µ(T 3(θP )|θ) ≤ µ(T 3(θP )|θP ) +

∫
|f(s|θ)− f(s|θP )|ds < 2ε′ (113)

for all θ ∈ Θ such that θP = P n(θ). Let ΘP
+ = {θP ∈ P n(Θ) : µ(T 1(θP )|θP ) > 0} and

ΘP
0 = {θP ∈ P n(Θ) : µ(T 1(θP )|θP ) = 0}. Note that µ(T 1(θP )|θ) = 0 is equivalent to

µ(T 1(θP )|θ) = 0 so long as P n(θ) = θP , because µ(θ) and µ(θP ) are mutually absolutely

continuous.
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Step 3: Weak law of large numbers. Take sufficiently large N3 > N1 such that for all integer

n ≥ N3, the following event An3,1 occurs with a probability more than 1− ε′:
n∑
i=1

1T 1(θP )(s̃i) > 0 if θP ∈ ΘP
+ (114)

n∑
i=1

1T 1(θP )(s̃i) = 0 if θP ∈ ΘP
0 (115)

n∑
i=1

1T 3(θP ))(s̃i) < 3ε′n (116)

n∑
i=1

E
[
ϕ∞`
(
s
∣∣θP )] > n(1− 2ε′)q` for all ` ∈ L(θP ) (117)

where θP = P n(θ̃) and L(θP ) is the set of ` such that∫
E
[
ϕ∞`
(
s
∣∣θP )] f(s|θP )ds = q` (118)

The existence of N3 follows from Chebyshev’s inequality conditional on θ̃. Note that the

following properties hold almost surely ((120) is due to Lemma 1):

s̃i 6= s̃j for all i, j ∈ Nn s.t. i 6= j (119)

arg max
z∈B∞(θP )

v∞(z|s̃i, θP ) is a singleton. (120)

Therefore, the event An3,2 that (114)–(117) and (120)–(119) hold has the probability E(An3,2) =

E(An3,1) > 1− ε′.

Step 4: Application of Theorem 3 and Lemma 2. Let εa = min{ε′εv/2, εv}. Take sufficiently

large N4 > N3 such that the conditions of Theorem 3 and Lemma 2 are satisfied with εa in

a measurable set En
4 .

From now on, we fix n ≥ N4 and ω ∈ An3,2 ∩ An4 . Let si = s̃i(ω), θP = P n(θ̃(ω)), and

Nk = {i ∈ Nn : si ∈ T k(θP )} for each k = 1, 2, 3. Since P(An3,2 ∩ An4 ) > 1 − 2ε′ > 1 − ε, to

complete the proof, it suffices to show the ε-efficiency of ϕn(sn).

Step 5: Case with θP ∈ ΘP
0 . Let x∗i = arg maxx∈X v

n
i (x|sn). Since N1 is empty,

vni (ϕni (sn)|sn) > v∞(ϕ∞(si|θP )|si, θP )− εa (by Step 4) (121)

≥ v∞(x∗i |si, θP )− εv − εa (by i 6∈ N1) (122)

> vni (x∗i |sn)− εv − 2εa (by Step 4) (123)

≥ vni (zi|sn)− ε (124)

for all zi ∈ ∆(X). Therefore, ϕn(sn) is ε-efficient at sn.
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Step 6: Case with θP ∈ ΘP
+. We then assume θP ∈ ΘP

+. Let λ̂ ∈ ∆(Xn) be such that

(i) λ̂ is ε-feasible, and

(ii) vi(ẑi|s̃n) ≥ vi(ϕ
n
i (s̃n)|s̃n) for all i ∈ Nn,

where ẑi is the i-th marginal distribution of λ̂. Let (z∗1 , . . . , z
∗
n) be such that

z∗i =

(1− ε′)ẑi + ε′x∗(si) if i ∈ N1

x∗(si) if i ∈ N2 ∪N3,
(125)

where x∗(si) = arg maxx∈X v
∞(x|si, θP ).

First note that the sum of the expected values of (z∗1 , . . . , z
∗
n) is less than that of (ϕ∞(s1|θP ),

. . . , ϕ∞(sn|θP )) in dimensions ` ∈ L(θP ): Since |N3| < 3ε′n, we have

n∑
i=1

E[z∗i,`] ≤
∑
i∈N1

(
E[ẑi,`] + ε′ · x̄

)
+
∑
i∈N2

E[ẑi,`] +
∑
i∈N3

(
E[ẑi,`] + x̄

)
(126)

≤ (1− ε)nq` + 4ε′n · x̄ (127)

< (1− ε/2)nq (128)

≤
n∑
i=1

E
[
ϕ∞` (si|θP )

]
. (129)

Second note that agents i in N1 prefer z∗i to ϕ∞(si|θP ) at θP . To show it, let v̄∞(si) =

max v∞(x|si, θ). Then

v∞(z∗i |si, θP ) > vni (z∗i |sn)− εa (by Step 4) (130)

≥ (1− ε′)vni (zi|sn) + ε′v̄∞(si)− εa (by (125)) (131)

≥ (1− ε′)vni (ϕ∞(si|θP )|sn) + ε′v̄∞(si)− εa (by (ii)) (132)

> (1− ε′)v∞(ϕ∞(si|θP )|si, θP ) + ε′v̄∞(si)− 2εa (by Step 4) (133)

> v∞(ϕ∞(si|θP )|si, θP ) + ε′εv − 2εa (by i ∈ N1) (134)

≥ v∞(ϕ∞(si|θP )|si, θP ) (by 2εa ≤ ε′εv). (135)

Finally, agents i ∈ N2 ∪ N3 at least weakly prefer z∗i to ϕ∞(si|θP ) simply because z∗i =

x∗(si, θ
P ) is optimal for them. That is,

v∞(z∗i |si, θP ) ≥ v∞(ϕ∞(si|θP )|si, θP ). (136)

To complete the proof, we derive a contradiction by “embedding” z∗ to the continuous

economy with θP . Let U(r, s) = {s′ ∈ S : ‖s − s′‖ < r} be the r-open ball of s. Take

sufficiently small r∗ > 0 such that {U(r∗, si)}ni=1 are disjoint and

ϕ∞(si|θP ) = arg max
z∈B∞(θP )

v∞(z|s′i, θP ) (137)

v∞(z∗i |s′i, θP ) > max
z∈B∞(θP )

v∞(z|s′i, θP ) if i ∈ N1 (138)
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for all i ∈ Nn and s′i ∈ Ui ≡ U(r∗, si). Such r∗ exists by (119), (120), (135), and the

continuity of v∞. Let ā = minim(Ui). For each a ∈ (0, ā), define a measurable mapping

za : S → ∆(X) by

za(s) =


a

m(Ui)
· z∗i +

(
1− a

m(Ui)

)
· ϕ∞(s|θP ) if s ∈ Bi with some i ∈ Nn

ϕ∞(s|θP ) otherwise.

(139)

By (129), z∗∗ = za is a feasible plan for some sufficiently small a ∈ (0, ā). Also, by (137) and

(138),

v∞(z∗∗(s)|s, θ) ≥ v∞(ϕ∞(s|θ)|s, θ) (140)

for all s ∈ S and the inequality is strict for all s ∈ Bi such that i ∈ N1. However, this

contradicts the efficiency of ϕ∞.

A.5.2 Proof of Theorem 4

In the proof of Theorem 4, using Steps 1–5 of the above proof, we can can simplify the

argument in Step 6. Let λ′ ∈ ∆(Xn) be a lottery on Xn such that

1

n

n∑
i=1

vni (z′i|sn) >
1

n

n∑
i=1

vni (ϕni (sn)|sn) + ε, (141)

where (z′1, . . . , z
′
n) be its marginal distributions. Let z∗i = (1 − ε′)z′i + ε′0 for each i. Then,

the condition for the feasibility holds:

n∑
i=1

E[z∗i ] ≤ (1− ε)nq <
n∑
i=1

E
[
ϕ∞(si|θP )

]
(142)

Also,

1

n

n∑
i=1

vni (z∗i |sn) ≥ 1

n

n∑
i=1

vni (z′i|sn)− ε′ (143)

>
1

n

n∑
i=1

vni (ϕni (sn)|sn) + ε− ε′ (144)

>
1

n

n∑
i=1

v∞(ϕ∞i (si|θP )|si, θP ) + ε− ε′ − εa (145)

>
1

n

n∑
i=1

v∞(ϕ∞i (si|θP )|si, θP ). (146)

Finally, we use the argument of the last paragraph of Step 6.
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A.6 Proof of Proposition 1

Fix λV ∈ ∆NI(V ). By the definition of ∆NI(V ), the demand correspondence D(p; v) is a

singleton almost everywhere in λV for all p ∈ [0,∞)L. Thus the aggregate demand corre-

spondence

A(p) =

∫
D(p; v)dλV (v) (147)

is indeed a function of p ∈ [0,∞)L. Furthermore, A(p) is continuous because

lim
p→p′

A(p) =

∫
lim
p→p′

D(p; v)dλ(v) =

∫
D(p′; v)dλ(v) = A(p′) (148)

by Lebesgue’s dominated convergence theorem.

Find p̄ > 0 such that A`(p) < q` whenever p` > p̄. Such p̄ exists because λV {v ∈ V :

‖v‖∞ ≥ a} converges to 0 as a→∞.18 For each p ∈ [0, p̄+ x̄]L, define

φ(p) = p+ A(p)− q. (149)

The image of φ is a subset of D = [−q̄, p̄ + x̄]L: If p` ≤ p̄ then φ`(p) ≤ p` + A`(p) ≤ p̄ + x̄,

and p` > p̄ implies φ`(p) ≤ p` ≤ p̄ + x̄ since A`(p) < q`. From the function φ, we define a

mapping ψ : D → D by

ψ(p) = φ(p ∨ 0).19 (150)

This mapping is continuous because so is A(p). Therefore, the mapping ψ has a fixed point

pF by Brouwer’s fixed point theorem.20

We prove that pW = pF ∨ 0 constitutes a Walrasian equilibrium together with a con-

sumption function xW (v) such that xW (v) ∈ D(pW ; v). Since pW ≥ pF , the market clearing

condition is satisfied:∫
xWdλ = A(pW ) = q − pW + φ(pW ) = q − (pW − pF ) ≤ q. (151)

The inequality is strict in the `-th dimension only when pW` > pF` , which occurs only when

pW` = 0. Therefore, the pair (xW , pW ) comprises a Walrasian equilibrium for economy λV .

18This is shown, for example, by Lebesgue’s dominated convergence theorem: λV {v ∈ V : ‖v‖∞ ≥ a} =∫
1{‖v‖∞ ≥ a} →

∫
lima→∞ 1{‖v‖∞ ≥ a} =

∫
0 = 0 as a→∞.

19Here p′ = p ∨ 0 is the dimension-wise maximum of p and the L-dimensional zero vector; that is,

p′` = max{p`, 0}.
20This fixed point method also appears in Azevedo et al. (2012, Theorem 1) and Budish et al. (2012,

Theorem 6).
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A.7 Proof of Proposition 2

Define the excess demand correspondence

Z(p) =

∫
E[Z(p; v)]dλ(v)− q, (152)

where the integral is the Aumann integral and E[Z(p; v)] = {E[z] : z ∈ Z(p; v)}. Then, Z(p)

is a non-empty, compact, and convex-valued upper hemicontinuous correspondence (Debreu,

1967, Section 6), The rest of the proof is identical to the proof of Theorem 6 in Budish et al.

(2012).

A.8 Proof of Proposition 3

The no-envy property is a direct consequence of utility maximization. To prove efficiency,

assume that z′ is a feasible plan such that λ(V+) = 1 and λ(V++) > 0, where V+ = {v :

v(z′(v)) ≥ v(zHZ(v))} and V++ = {v : v(z′(v)) > v(zHZ(v))}. As a consequence of utility

maximization, pHZ · E[z′(v)] ≥ pHZ · E[zHZ(v)] for all v+ ∈ V+, and when v ∈ V++, this

inequality is strict. By integrate the above inequality with respect to v,

pHZ · q ≥ pHZ ·
∫

E[z′(v)]dλ(v) > pHZ ·
∫

E[zHZ(v)]dλ(v) = pHZ · q. (153)

This is a contradiction.

References
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