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1 Introduction

Transplantation is preferred to dialysis due to both medical and economic reasons by end-stage

kidney disease patients. It is illegal to buy or sell a human body organ, including a kidney, in

most of the countries in the world.1 Moreover, a transplanted kidney from a live donor survives

longer than that from a deceased donor (Mandal et al., 2003). Hence, live donation is the preferred

solution for a patient. There are two kidneys in human body, one is often enough for survival. With

the advancement of medical techniques, live donation has been the increasing source of donations.

Usually, live donors are friends and family members of a patient. However, a patient has about 47%

chance to receive a willing live-donor’s kidney (see Roth, Sönmez, and Ünver (2005a) simulations),

because of blood-type incompatibility or antibodies to one of the donor’s proteins known as tissue-

type incompatibility.
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edges the research support of NSF via grant SES-0616470, and M. Utku Ünver acknowledges the research support

of NSF via grant SES-0616689. We would also like to thank participants at GAMES ’08, SAET ’09, and the Market

Design Workshop ’08 co-organized by MIT Economics and Electrical Engineering Departments. All errors are our

own responsibility.
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1The National Organ Transplant Act of 1984 makes it illegal to buy or sell a kidney in the US and makes donation

the only viable option for kidney transplantation. It is also illegal to buy or sell a body organ in rest of the western

world World Health Organization condemns the practice of organ sales.
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Humans have four blood-types “O”, “A”, “B”, and “AB”, named according to the existence

or non-existence of “A” or “B” type blood proteins in blood cells. While “O” donors are blood-

type compatible with all recipients, “A” donors are only blood-type compatible with “A” or “AB”

recipients, “B” donors are only blood-type compatible with “B” or “AB” recipients, and “AB” donors

only blood-type compatible with “AB” recipients.

Even if a donor is blood-type compatible with a recipient, she may not donate a kidney to him

due to tissue-type incompatibility. Zenios, Woodle, and Ross (2001) report that there is about 11%

chance for this to happen for a random patient and blood-type compatible donor.

Rapaport (1986) proposed “paired kidney donations” to be performed between two such incom-

patible patient-donor pairs (blood-type incompatible or tissue-type incompatible): the donor in each

pair gives a kidney to the other pair’s compatible patient. In the 2000’s, New England, Ohio, and

Johns Hopkins transplant programs in the US started conducting ad-hoc live donor kidney exchange

operations. The initial hurdle in organizing kidney exchanges was the lack of mechanisms to clear the

market in an efficient and incentive compatible manner. Roth, Sönmez, and Ünver (2004) proposed

the first such clearance mechanism.

One important aspect of kidney exchanges is that regardless of the number of pairs participating

in one exchange, all transplants in an exchange should be conducted simultaneously. Otherwise, one

ore more of the live donors whose patients receive a kidney in the previously conducted part of an

exchange may back out from the future donations of the same exchange. Since kidney donations are

gifts, the donor can change her mind at any moment in time prior to the actual transplant, and it is

not legal to write a contract that forces a donor for future donations.

This practice naturally places an upper limit on the number of kidney transplants that can be

conducted simultaneously. Based on this important restriction, Roth, Sönmez, and Ünver (2005b)

focused on only exchanges consisting of 2 pairs. As the two of the coauthors of the above study,

we analyzed the structure of Pareto-efficient matchings when only two-way exchanges are possible

and patients are indifferent among compatible donors. Then we proposed incentive-compatible and

Pareto-efficient mechanisms based on two polar fairness approaches: a priority-based mechanism that

matches pairs based on an exogenous priority structure and a probabilistic egalitarian mechanism that

matches all pairs as equal probability as possible without violating medical compatibility constraints

and Pareto-efficiency.2

2New England Program for Kidney Exchange (NEPKE) is the first US kidney exchange program that started to
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Since its conception, one important aspect of the practical kidney exchange paradigm has been

almost exclusively having incompatible pairs as participants in kidney exchange, while the donors of

compatible pairs directly donate to their paired-recipients.

For a two-way exchange to go through, the donor of each pair at least to be blood-type compatible

with the recipient of the other pair. Thus, two blood-type incompatible pairs can never participate

in a two-way kidney exchange (Roth, Sönmez, and Ünver, 2007; Ünver, 2010). When compatible

pairs do not participate in exchange, a blood-type compatible pair is available only if the pair is

tissue-type incompatible. Thus, in theory, we can boost the number of exchanges by introducing

compatible pairs into exchange.

Moreover, in the US, doctors generally assume that two live-donor kidneys survive almost the

same duration regardless of the genetic distance between the donor and the recipient’s certain DNA

proteins (Gjertson and Cecka, 2000; Delmonico, 2004). Although the positive correlation between

genetic closeness of the donor to the recipient and transplant organ survival is unanimously accepted

for deceased-donor transplants, there is no conclusive empirical evidence for such a positive correlation

for live-donor kidney transplants. Controlling for other properties such as medical background, age

etc., many compatible pairs could be willing to participate in exchange. This idea is not new, and

was first proposed by Ross and Woodle (2000). Later this idea received little attention until Roth,

Sönmez, and Ünver (2004, 2005a), which proposed the same concept in mechanism design.

In this paper, we consider a kidney exchange model in which both compatible and incompatible

pairs available for kidney exchange. In a kidney exchange only 2 pairs can participate and patients

are indifferent across all compatible donors. We aim to understand the structure of Pareto-efficient

matchings in this framework. In Roth, Sönmez, and Ünver (2004, 2005a), we developed a theory for

implement mechanisms for kidney exchange, and was established in 2004 through the our collaboration with Alvin E.

Roth, and medical professionals Francis Delmonico and Susan Saidman. NEPKE started to implement a version of

the priority mechanism in 2004 proposed in the above paper (Roth, Sönmez, and Ünver, 2005a) It was followed by the

Johns Hopkins Kidney Exchange Program (Segev et al., 2005), which adopted a similar algorithm due to Edmonds

(1965) as earlier proposed by Roth, Sönmez, and Ünver (2005b). Later more complicated exchange scenarios were

embedded in these programs and a larger inter-regional program, Alliance for Paired Donation (APD) was established

in 2005 through our collaboration with Alvin E. Roth, and medical professionals Dr. Michael Rees and Jon Kopke. In

late 2009, a pilot national program will be started under the provision of United Network for Organ Sharing (UNOS),

the federal entity that also foresees deceased donor donations. This program will use a similar matching mechanism

to the APD mechanism.
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two-way kidney exchanges in a similar environment where the only difference is only incompatible

pairs can participate in exchange. We proposed Pareto-efficient and incentive compatible mecha-

nisms for this environment. In this previous framework, most underlying structure has been readily

available in the combinatorial optimization literature through the works of Gallai (1963, 1964); Ed-

monds (1965); and many others (see Lovasz and Plummer (1986) and Korte and Vygen (2002) for a

comprehensive survey of such work). The key result in this literature was the Gallai (1963, 1964) -

Edmonds (1965) Decomposition Lemma, which gives a clear structure of Pareto-efficient matchings.

However, in the present model that we introduce, a result that we can borrow from previous literature

does not exist. It also turns out that our model is not just a trivial extension of the previous model

so that we can invoke some of the earlier results proven for the simpler model in our more advanced

framework.

Thus, our aim in this paper is to develop the necessary machinery and both underlying math-

ematical and economic structure that governs this problem. First, we prove that under any two

Pareto-efficient matchings the same number of patients receives transplant (Proposition 1). More-

over, whenever A is the set of compatible pairs and J is the set of incompatible pairs that are

participating in two-way exchanges in a Pareto-efficient matching, there is a Pareto-efficient match-

ing that matches exactly pairs in A∪J in two-way exchanges (Proposition 2). These two results imply

that we can find a Pareto-efficient matching that matches the same incompatible pairs in two-way

exchanges as another given Pareto-efficient matching, and uses the least number of compatible pairs

possible to construct any other Pareto-efficient matching (Corollary 1). This result is particularly

important, since the policy maker may try to minimize the number of compatible pairs participating

in exchanges, and this policy will have no particular effect in determining which incompatible pairs

to match.

We continue by proposing a priority mechanism that is compatible with the current practice in

New England Kidney Exchange Program, and incorporates compatible pairs to the system.

Later, we analyze the structure of Pareto-efficient matchings. We derive a decomposition result

that extends the GED Lemma to our framework. We decompose the set of pairs into 3 groups as

the set of underdemanded pairs, the set of overdemanded pairs, and the set of perfectly matched

pairs. An underdemanded pair is an incompatible pair that remains unmatched under at least one

Pareto-efficient matching. An overdemanded pair is a pair that is not underdemanded but mutually

compatible with an underdemanded pair. A perfectly matched pair is a pair that is neither under-
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demanded nor overdemanded. Our decomposition result (Proposition 4) shows that overdemanded

pairs are always matched at a Pareto-efficient matching with underdemanded pairs. If we remove

the overdemanded pairs from the problem, the remaining pairs are grouped in components. A com-

ponent of the subproblem is a minimal set of pairs that are not mutually compatible with any pair

(of the subproblem) outside of this set. We show that, a pair is underdemanded if and only if it is

a member of such a component that consists of odd number of incompatible pairs (Proposition 4).

We further prove that under any Pareto-efficient matching all but one of the members of such an

odd-numbered component of incompatible pairs are matched with each other while the remaining

member is unmatched or gets matched with an overdemanded pair.

2 The Model

A pair consists of a patient and a donor. A pair is compatible if the donor of the pair can medically

donate her kidney to the patient of the pair, and incompatible otherwise. Let NI be the set of

incompatible pairs and NC be the set of compatible pairs. Let N = NI ∪NC be the set of all pairs.

The donor of pair x is compatible with the patient of pair y if the donor of pair x can medically

donate a kidney to the patient of pair y. Two distinct pairs x, y ∈ N are mutually compatible if

the donor of pair x is compatible with the patient of pair y and the donor of pair y is compatible

with the patient of pair x.

For any pair x ∈ N , let %x denote its preferences over N . Let �x denote the strict preference

relation and ∼x denote the indifference relation associated with %x. Preferences of a pair is dictated

by the patient of the pair who is indifferent between all compatible kidneys and who strictly prefers

any compatible kidney to any incompatible kidney. In addition, the patient of an incompatible pair

strictly prefers remaining unmatched (i.e. keeping her donor’s incompatible kidney) to any other

incompatible kidney. Therefore for any incompatible pair i ∈ NI ,

• x ∼i y for distinct x, y ∈ N with a compatible donor for the patient of pair i,

• x �i i for any x ∈ N with a compatible donor for the patient of pair i,

• i �i x for any x ∈ N without a compatible donor for the patient of pair i,

and for any compatible pair c ∈ NC ,

5



• x ∼c y for distinct x, y ∈ N with a compatible donor for the patient of pair c,

• c �c x for any x ∈ N without a compatible donor for the patient of pair c.

Throughout the paper we assume that only two-way exchanges are feasible where at least one

of the pairs is incompatible.3 A two-way exchange is ordinary if it is an exchange between two

incompatible pairs that are mutually compatible. A two-way exchange is altruistically unbalanced

if it is an exchange between an incompatible and a compatible pair that are mutually compatible.

The feasible exchange matrix R = [rx,y]x,y∈N identifies all feasible exchanges where

rx,y =

 1 if y ∈ N \ {x}, x, y are mutually compatible, and x or y ∈ NI

0 otherwise.

For any x, y ∈ N with (1) rx,y = 1 and (2) either x ∈ NI or y ∈ NI , we refer the pair (x, y) as a

feasible exchange.

An altruistic kidney exchange problem (or simply a problem) (N,R) consists of a set of

pairs and its feasible exchange matrix.

A matching is a set of mutually exclusive feasible exchanges. Formally, given a set N of pairs a

matching is a set µ ⊆ 2N
2

such that

1. (x, y) ∈ µ and (x, y′) ∈ µ implies y = y′,

2. (x, y) ∈ µ and (x′, y) ∈ µ implies x = x′, and

3. (x, y) ∈ µ implies rx,y = 1 and either x ∈ NI or y ∈ NI .

Here (x, y) ∈ µ means that the patient of each pair receives a kidney from the donor of the other

pair. Let M(N,R) denote the set of all matchings for a given problem (N,R).4

For any µ ∈M(N,R) and (x, y) ∈ µ, define µ(x) ≡ y and µ(y) ≡ x. Here x and y are matched

with each other in µ. For any µ ∈ M(N,R) and x ∈ N with no y ∈ N \ {x} such that (x, y) ∈ µ,

define µ(x) ≡ x. Here x is unmatched in µ. For any matching µ, let Mµ denote the set of pairs

that are matched in µ. Formally,

Mµ = {x ∈ N : µ(x) 6= x}.
3Clearly there is no benefit from an exchange between two compatible pairs in our model.
4The ordering of pairs in a feasible exchange is not important, thus (x, y) = (y, x) in our notation.
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Observe that an incompatible pair receives a transplant in a matching µ only if it is matched in µ

whereas a compatible pair receives a transplant whether it is matched or not. For any matching µ,

let T µ denote the set of all pairs who receive a transplant in µ. Formally,

T µ = {x ∈ NI : µ(x) 6= x} ∪NC .

3 Pareto-Efficient Matchings

Throughout this section, fix a problem (N,R). For any µ, ν ∈ M, µ Pareto-dominates ν if

µ (x) %x ν (x) for all x ∈ N and µ (x) �x ν (x) for some x ∈ N . A matching µ ∈ M is Pareto-

efficient if there exists no matching that Pareto-dominates µ. Let E ⊆ M be the set of Pareto-

efficient matchings.

When there are no compatible pairs, it is well-known that the same number of incompatible

pairs are matched at each Pareto efficient matching. In our model what is critical is who receives a

transplant (rather than who is matched). In our first result we show that the number of the pairs

who receive a transplant is the same in any Pareto-efficient matching.

Proposition 1 For any two Pareto-efficient matchings µ, ν ∈ E, we have |T µ| = |T ν | .

Proof of Proposition 1. We will prove the proposition by showing that if two matchings µ, ν ∈M
are such that |T µ| > |T ν |, then there exists a matching that Pareto-dominates ν. Let µ, ν ∈ M
be such that |T µ| > |T ν |. Let a0 ∈ T µ \ T ν . Since patients of compatible pairs always receive a

transplant, a0 ∈ NI and therefore a0 ∈ Mµ. Construct the sequence {a0, a1, . . . , ak} ⊆ Mµ ∪Mν as

follows:

a1 = µ (a0) ,

a2 = ν (a1) ,

...

ak =

 µ (ak−1) if k is odd

ν (ak−1) if k is even

and where the last element of the sequence, ak, is unmatched either in µ or in ν (i.e. ak ∈ (Mµ\Mν)∪
(M ν \Mµ)). Observe that by construction a0 is matched in µ but not in ν, whereas a1, . . . , ak−1
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are all matched in both µ and ν. Also observe that (a`, a`+1) is a feasible exchange for any ` ∈
{0, 1, . . . , k − 1}.

There are three cases to consider:

Case 1. ak ∈ T ν \ T µ:

This case, indeed, does not help us to construct a matching that Pareto-dominates ν. However

since

(i) |T µ| > |T ν |, and

(ii) any pair that is not at the two ends of the sequence receives a transplant in both µ and ν,

there exists a0 ∈ T µ \ T ν such that the last element of the above constructed sequence ak is

such that ak 6∈ T ν \ T µ. Hence Case 1 cannot cover all situations.

Case 2. ak ∈Mµ \Mν :

Since ak is matched in µ but not in ν, k is odd. Consider the following matching η ∈M:

η = (ν \ {(a1, a2) , (a3, a4) , . . . , (ak−2, ak−1)}) ∪ {(a0, a1) , (a2, a3) , . . . , (ak−1, ak)} .

We have T η = T ν ∪ {a0, ak}. Since a0 6∈ T ν , matching η Pareto-dominates matching ν.

Case 3. ak ∈ NC and ak ∈Mν \Mµ:

Since ak is matched in ν but not in µ, k is even. Consider the following matching η ∈M:

η = (ν \ {(a1, a2) , (a3, a4) , . . . , (ak−1, ak)}) ∪ {(a0, a1) , (a2, a3) , . . . , (ak−2, ak−1)} .

Observe that ak is matched in ν but not in η whereas a0 is matched in η but not in ν. But

since ak 6∈ NI , T
η = T µ ∪ {a0} and therefore matching η Pareto-dominates matching ν.

Since there exists a0 ∈ T µ \ T ν where either Case 2 or Case 3 applies, matching ν is Pareto-

inefficient. ♦

Our next result shows that the choice of compatible pairs to be matched at a Pareto efficient

matching can be separated from the choice of incompatible pairs.
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Proposition 2 Let µ, ν ∈ E be two Pareto-efficient matchings such that Mµ∩NC = A and Mν∩NI =

J . Then there exists a Pareto-efficient matching η ∈ E such that Mη = A ∪ J .

Proof of Proposition 2. Let µ, ν be as in the statement of the proposition. By Proposition 1,

|T µ \T ν | = |T ν \T µ|. If T µ = T ν then η = µ and we are done. Otherwise let a0 ∈ T µ \T ν . Note that

a0 ∈ NI (since only incompatible pairs can receive a transplant in one matching but not in another).

We will construct a matching that matches ak together with all elements of Mµ except a0 ∈ NI .

Repeated application of this construction yields the desired matching η.

Construct the sequence {a0, a1, . . . , ak} ⊆Mµ ∪Mν as follows:

a1 = µ (a0) ,

a2 = ν (a1) ,

...

ak =

 µ (ak−1) if k is odd

ν (ak−1) if k is even

and where the last element of the sequence, ak, is unmatched either in µ or in ν (i.e. ak ∈ (Mµ \
Mν) ∪ (M ν \Mµ)). Observe that (a`, a`+1) is a feasible exchange for any ` ∈ {0, 1, . . . , k − 1}.

There are three cases to consider:

Case 1. k is odd:

In this case both a0 and ak are matched in µ, but not in ν. Consider the matching

ν ′ = (ν \ {(a1, a2) , (a3, a4) , . . . , (ak−2, ak−1)}) ∪ {(a0, a1) , (a2, a3) , . . . , (ak−1, ak)} .

By construction Mν′
= Mν ∪ {a0, ak}. Moreover while ak may not be an incompatible pair, a0

is and hence T ν ⊂ T ν
′
. Therefore ν ′ Pareto-dominates ν contradicting Pareto efficiency of ν.

Case 2. k is even with ak ∈ NC :

In this case ak, a compatible pair, is matched in ν but not in µ. In contrast a0, an incompatible

pair, is matched in µ but not in ν. Consider the matching

ν ′ = (ν \ {(a1, a2) , (a3, a4) , . . . , (ak−1, ak)}) ∪ {(a0, a1) , (a2, a3) , . . . , (ak−2, ak−1)} .
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By construction Mν′ \Mν = {a0} whereas Mν \Mν′
= {ak}. Since a0 is an incompatible pair

while ak is not, T ν ⊂ T ν
′
. Therefore ν ′ Pareto-dominates ν contradicting Pareto efficiency of

ν.

Since Cases 1 and 2 each yield a contradiction, for each a0 ∈ T µ \ T ν , the last element ak of the

above constructed sequence {a0, a1, . . . , ak} should be an incompatible pair and k should be even.

We next consider this final case.

Case 3. k is even with ak ∈ NI :

In this case ak is matched in ν and therefore by construction ak ∈ T ν \ T µ. Consider the

matching

µ′ = (µ \ {(a0, a1) , (a2, a3) , . . . , (ak−2, ak−1)}) ∪ {(a1, a2) , (a3, a4) , . . . , (ak−1, ak)} .

By construction Mµ′
= (Mµ \ {a0}) ∪ {ak}. So in comparison with matching µ, matching

µ′ matches incompatible pair ak instead of incompatible pair a0. Observe that |T µ′ ∩ T ν | =

|T µ ∩ T ν | + 1 while Mµ ∩ NC = Mµ′ ∩ NC . If |T ν \ T µ| = 1, then η = µ′ is the desired

matching and we are done. Otherwise, since Case 3 is the only viable case we can repeat the

same construction for any a0 ∈ T µ \ T ν to obtain the desired matching η.

♦

In the present context, the involvement of compatible pairs in exchange is purely altruistic and it

may be therefore plausible to minimize the number of compatible pairs matched at Pareto efficient

matchings. An immediate corollary of Proposition 2 is that, the number of compatible pairs who

exchange kidneys can be minimized without affecting the choice of incompatible pairs.

Corollary 1 Let µ ∈ E be such that Mµ∩NI = J . Then there exists η ∈ E be such that Mη∩NI = J

and |Mη ∩NC | ≤ |Mν ∩NC | for any ν ∈ E.

3.1 The Priority Mechanisms

The experience of transplant centers is mostly with the priority allocation systems used to allocate

cadaver organs. New England Program for Kidney Exchange has recently adopted a variant of a
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priority allocation system for ordinary kidney exchanges. Priority mechanisms can be easily adopted

to the present context.

Let |NI | = n. A priority ordering is a one-to-one and onto function π : {1, . . . , n} → NI . Here

incompatible pair π(k) is the kth highest priority pair for any k ∈ {1, . . . , n}.
For any problem, the priority mechanism induced by π picks any matching from a set of

matchings Enπ which is obtained by refining the set of matchings in n steps as follows:

• Let E0
π =M (i.e. the set of all matchings).

• In general for k ≤ n, let Ekπ ⊆ Ek−1
π be such that

Ekπ =


{
µ ∈ Ek−1

π : µ (k) 6= k
}

if ∃µ ∈ Ek−1
π s.t. µ (k) 6= k

Ek−1
π otherwise

.

Each matching in Enπ is referred as a priority matching and they all match the same set

of incompatible pairs. By construction each matching in Enπ is Pareto-efficient. Observe that by

Proposition 1 there is no trade-off between priority allocation and the number of transplants that

can be arranged. In our model, all patients are indifferent between any two matchings in Enπ and hence

the priority mechanism can pick any one of them. Nevertheless there can be other considerations

affecting this selection such as minimizing the number of compatible pairs that are matched.

4 The Structure of Pareto-Efficient Matchings

For any problem (N,R), partition the set of pairs N = NI ∪ NC as {U(N,R), O(N,R), P (N,R)}
where

U(N,R) = {x ∈ NI : ∃µ ∈ E (N,R) s.t. µ (x) = x} ,

O(N,R) = {x ∈ N \ U(N,R) : ∃y ∈ U(N,R) s.t. ry,x = 1} ,

P (N,R) = N \ (U(N,R) ∪O(N,R)) .

That is, U(N,R) is the set of incompatible pairs each of which remains unmatched at a Pareto-

efficient matching. We refer U(N,R) as the set of underdemanded pairs. Set O(N,R) is the set

of pairs that are not underdemanded and have a mutually compatible underdemanded pair. We will
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refer to O (N,R) as the set of overdemanded pairs. Set P (N,R) is the remaining set of pairs,

and we will refer to it as the set of perfectly matched pairs. Proposition 4, which we will shortly

state, will justify this terminology. But first we present a simple comparative static exercise which

states that if a pair is not underdemanded for a problem, then it cannot become underdemanded

when a compatible pair is added to the problem.5 So pairs that always receive a transplant at each

Pareto efficient matching still do so if a compatible pair arrives.

Proposition 3 Let (N,R) and (N∗, R∗) be such that N∗ = N ∪{c} where c is a compatible pair and

R∗N = R. Let i ∈ NI = N∗I be such that i 6∈ U(N,R). Then i 6∈ U(N∗, R∗) either.

Proof of Proposition 3. Let (N,R) and (N∗, R∗) be such that N∗ = N ∪ {c} where c is a

compatible pair and R∗N = R. Let i ∈ NI be such that i 6∈ U(N,R).

Continue the proof here.

For any K ⊂ N let RK = [rx,y]x,y∈K be the feasible exchange submatrix for the pairs in K.

We refer to (K,RK) as a subproblem of (N,R). A subproblem (K,RK) is connected if for any

x, y ∈ K there exist x1, x2, ..xm ∈ K with x1 = x and xm = y such that for all ` ∈ {1, ...,m− 1},
rx`,x`+1 = 1. A connected subproblem (K,RK) is a component of (N,R) if there is no other

connected subproblem (L,RL) such that K $ L.

Consider the subproblem
(
N \O (N,R) , RN\O(N,R)

)
obtained by removal of all pairs in O (N,R).

We refer to a component (K,RK) of
(
N \O (N,R) , RN\O(N,R)

)
as a dependent component if

K ⊆ NI \O (N,R) and |K| is odd. We refer to a component (K,RK) of
(
N \O (N,R) , RN\O(N,R)

)
as a self-sufficient component if K ∩NC 6= ∅ or |K| is even. We will justify these names in the

proposition given below. Let D denote the set of dependent components. Let S denote the set of

self-sufficient components.

The following result characterizes the structure of the set of Pareto-efficient matchings for problem

(N,R).

Proposition 4 Given a problem (N,R), let (K,RK) be the subproblem with K = N \O (N,R) (i.e.

the subproblem where all overdemanded pairs are removed) and let µ be a Pareto-efficient matching

for the original problem (N,R). Then,

1. For any pair x ∈ O (N,R), µ (x) ∈ U (N,R) .

5It is easy to see that the same statement may not hold if an incompatible pair is added.
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2.

(a) For any self-sufficient component (L,RL) of (K,RK), L ⊆ P (N,R), and

(b) for any incompatible pair i ∈ L ∩NI , µ (i) ∈ L \ {i} .

3.

(a) For any dependent component (J,RJ) of (K,RK), J ⊆ U (N,R), and for any pair i ∈ J ,

it is possible to match all remaining pairs in J with each other.

(b) Moreover, for any dependent component (J,RJ) or (K,RK) , either

i. one and only one pair i ∈ J is matched with a pair in O (N,R) in the Pareto-efficient

matching µ, whereas all remaining pairs in J are matched with each other (so that all

pairs in J are matched), or

ii. one pair i ∈ J remains unmatched in the Pareto-efficient matching µ, whereas all

remaining pairs in J are matched with each other (so that only i remains unmatched

among pairs in J).

Proof of Proposition 4. We will prove the proposition by induction on the number s of compatible

pairs in N.

When s = 0, i.e. when there are no compatible pairs, then the statement of the proposition holds

by the Gallai (1963, 1964)-Edmonds (1965) Decomposition (GED) Lemma.6

In the inductive step, let the statement of the proposition hold when there are s ≥ 0 compatible

pairs in N . We will show that this implies that the statement holds for any problem (N,R) where

there are s+ 1 compatible pairs.

Fix any problem (N,R) where there are s + 1 compatible pairs in N . Pick any one of them

c ∈ NC ⊆ N . Let (N ′, R′) =
(
N \ {c} , RN\{c}

)
. By the inductive assumption, Proposition 3 holds

for problem (N ′, R′).

We have two cases to consider.

Case 1. There is no pair i ∈ U (N ′, R′) s.t. ri,c = 1 (i.e., pair c is not mutually compatible with

any underdemanded pair of (N ′, R′)).

6See Lovasz and Plummer (1986); Korte and Vygen (2002) or Roth, Sönmez, and Ünver (2005b) for a complete

statement of the lemma.
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Let ν ∈ E (N ′, R′). Since pair c is mutually compatible with only pairs in O (N ′, R′)∪P (N ′, R′) ⊆
T ν , then no additional pair can be matched in (N,R). Thus, ν ∈ E (N ′, R′). This together with

Proposition 3 imply that U (N,R) = U (N ′, R′). Hence, there is no pair i ∈ U (N,R) s.t. ri,c = 1

and therefore, O (N,R) = O (N ′, R′). Thus P (N,R) = P (N ′, R′) ∪ {c}.
Let (K,RK) be the subproblem of (N,R) with K = N \O (N,R) and (K ′, R′K′) be the subproblem

of (N ′, R′) with K ′ = N \ O (N ′, R′). Since O (N,R) = O (N ′, R′), K = K ′ ∪ {c}. Recall that by

inductive assumption the proposition holds for (N ′, R′), and therefore for any dependent component

(J,R′J) of (K ′, R′K′), J ⊆ U (N ′, R′). Hence, there is no j ∈ J s.t. rj,c = 1. Therefore, any

dependent component (J,R′J) in (K ′, R′K′) remains a dependent component of (K,RK). Moreover,

since K \K ′ = {c} ⊆ NC , there cannot be any additional dependent components of (K,RK). Hence,

D (K,RK) = D (K ′, R′K′).

By the inductive assumption since the proposition is true for (N ′, R′), it holds for (N,R) as well.

Case 2: There is i ∈ U (N ′, R′) s.t. ri,c = 1 (i.e., pair c is mutually compatible with at least one

underdemanded pair of (N ′, R′)).

Since by the inductive assumption the proposition holds for (N ′, R′), |D (K ′, R′K′)| − |O (N ′, R′)|
incompatible pairs remain unmatched at any Pareto-efficient matching in (N ′, R′). We prove Case 2

through the following claims:

Claim 1: Under (N,R), |D (K ′, R′K′)|− |O (N ′, R′)|−1 incompatible pairs remain unmatched at any

Pareto-efficient matching.

Proof of Claim 1: Since i ∈ U (N ′, R′), there is a matching µ ∈ E (N ′, R′), with µ (i) = i. Since

ri,c = 1, ν = µ∪{(i, c)} is a feasible matching under (N,R) and it leaves |D (K ′, R′K′)|−|O (N ′, R′)|−1

incompatible pairs unmatched. Suppose that ν 6∈ E (N,R), then there exists a matching η under

(N,R) such that η leaves less incompatible pairs unmatched. Hence η \ {(µ (c) , c)} is a feasible

matching under (N ′, R′) . However, this matching leaves at least |D (K ′, R′K′)| − |O (N ′, R′)| − 1

incompatible pairs unmatched, contradicting the fact that all Pareto-efficient matchings of (N ′, R′)

should leave the same number of incompatible pairs unmatched. Thus, all Pareto-efficient matchings

of (N ′, R′) leave exactly |D (K ′, R′K′)| − |O (N ′, R′)| − 1 incompatible pairs unmatched. ♦

Claim 2: Let ν ∈ E (N,R). Then, ν−c = ν \ {(c, ν (c))} ∈ E (N ′, R′).
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Proof of Claim 2: Let ν ∈ E (N,R) and ν−c = ν \ {(c, ν (c))}. By Claim 1, ν−c leaves at most

|D (K ′, R′K′)| − |O (N ′, R′)| incompatible pairs unmatched. Since by the inductive assumption the

proposition holds for (N ′, R′), any Pareto-efficient matching of (N ′, R′) leaves exactly |D (K ′, R′K′)|−
|O (N ′, R′)| incompatible pairs unmatched. Thus ν−c ∈ E (N ′, R′). ♦

Claim 3: If (J,R′J) ∈ D (K ′, R′K′) such that J ∩ U (N,R) 6= ∅ then J ⊆ U (N,R).

Proof of Claim 3: Pick any dependent component (J,R′J) of (K ′, R′K′). Since by the inductive

assumption the proposition holds for (N ′, R′), J ⊆ U (N ′, R′). Suppose j ∈ J ∩U (N,R). Then there

is a Pareto-efficient matching ν under (N,R) such that ν (j) = j. Thus, by Claim 1, |D (K ′, R′K′)|−
|O (N ′, R′)|− 1 incompatible pairs are unmatched in ν. Consider the matching ν−c constructed from

ν by removing (ν (c) , c), i.e. ν−c = ν \ {(ν (c) , c)}. By Claim 2, ν−c ∈ E (N ′, R′). Since ν−c (j) = j,

and since by the inductive assumption the proposition holds for (N ′, R′), then Part (3b) implies that

all pairs in J \ {j} are matched with each other in ν−c. By Part (3a), for any x ∈ J , one can leave

x unmatched, match every pair in J \ {x} with each other, and keep the rest of the matching ν−c

the same. Let µ−x be this matching. Then µ−x ∪ {(ν (c) , c)} is a Pareto-efficient matching under

(N,R), and it leaves x unmatched. Hence x ∈ U (N,R). ♦

Claim 4: Part (1) of Proposition 4 holds for (N,R) .

Proof of Claim 4: Let x ∈ O (N,R) and ν be an arbitrary Pareto-efficient matching of (N,R). We

will show that ν (x) ∈ U (N,R).

Let j ∈ U (N,R) s.t. rx,j = 1 and µ ∈ E (N,R) s.t. µ (j) = j.

If ν (j) = j, then the matching obtained by matching x with j instead of ν (x) and keeping all

the remaining matches as in ν is Pareto-efficient. Observe that ν (x) 6∈ NC , since otherwise the new

matching matches one more incompatible pair, j, than ν, contradicting ν is Pareto efficient. Since

ν (x) is unmatched under the new Pareto-efficient matching, then ν (x) ∈ U (N,R) and we are done.
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So assume that ν (j) 6= j. We obtain a sequence of pairs {a0, a1, ...., ak} ⊆ N\ {x} as follows:

a0 = j,

a1 = ν (a0) ,

a2 = µ (a1) ,

a3 = ν (a2) ,

...

ak =

 ν (ak−1) if k is odd

µ (ak−1) if k is even

and where the last element of the sequence, ak for k > 0, is (i) unmatched either in ν or in µ, or

(ii) matched with x either in ν or in µ. Observe that by construction the incompatible pair a0 = j

is unmatched in µ but not in ν, whereas a1, . . . , ak−1 are all matched in both µ and ν. Also observe

that (a`, a`+1) is a feasible exchange for any ` ∈ {0, 1, . . . , k − 1}. Two cases are possible:

Case a. k is odd: We construct the following matching:

µ′ = (µ \ {(a1, a2) , ..., (ak−2, ak−1)}) ∪ {(a0, a1) , (a2, a3) , ..., (ak−1, ak)} .

Now, ak is either (i) unmatched in µ but not in ν or (ii) matched with x in µ but not in

ν. If case (i) holds, since µ′ matches at least incompatible pair a0 = j in addition to all the

incompatible pairs that µ matches, µ is Pareto-dominated in (N,R), a contradiction. Thus,

case (ii) holds. If x ∈ NI , then µ′ is Pareto-efficient in (N,R) and µ′ (x) = x, contradicting x is

overdemanded. If x ∈ NC , since µ′ matches at least incompatible pair a0 = j in addition to all

the incompatible pairs that µ matches, µ is Pareto-dominated in (N,R), a contradiction. But

then case (ii) cannot hold, either. We showed that k cannot be odd.

Case b. k is even: Then ak is either (i) unmatched in ν but not in µ, or (ii) matched with x in ν but

not in µ. We have two subcases:

case (i) holds: If ak ∈ NC , then we form the following matching:

µ′ = (µ \ {(a1, a2) , ..., (ak−1, ak)}) ∪ {(a0, a1) , (a2, a3) , ..., (ak−2, ak−1)} .
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Since µ′ matches a0 = j in addition to all the incompatible pairs that µ matches, µ is

Pareto-dominated in (N,R), a contradiction.

Hence, ak ∈ NI . We construct the following matching:

ν ′ = (ν \ {(ν (x) , x) , (a0, a1) , ..., (ak−2, ak−1)}) ∪ {(x, a0) , (a1, a2) , ..., (ak−1, ak)} .

Since a0 = j is mutually compatible with x, this is a feasible matching. If ν (x) ∈ NC∪{x},
then ν ′ matches at least one more incompatible pair, ak, than ν, contradicting ν is Pareto-

efficient. Hence, ν (x) ∈ NI and ν ′ matches the same number of incompatible pairs as ν.

In particular, it matches all incompatible pairs matched in ν except pair ν (x), but instead

it matches pair ak. Hence, ν ′ is Pareto-efficient in (N,R). Since, ν (x) is unmatched in ν ′,

we have ν (x) ∈ U (N,R).

case (ii) holds: Then ν (x) = ak. We form the following matching:

µ′ = (µ \ {(a1, a2) , ..., (ak−1, ak)}) ∪ {(a0, a1) , (a2, a3) , ..., (ak−2, ak−1)} .

If ak ∈ NC , then µ′ matches one more incompatible pair, a0 = j, than µ, contradicting that

µ is Pareto-efficient. Hence, ak ∈ NI and µ′ matches the same number of incompatible

pairs as µ. Hence, µ′ ∈ E (N,R). Since ak = ν (x) is unmatched in µ′, ν (x) ∈ U (N,R) .♦

Claim 5: D (K,RK) ⊆ D (K ′, R′K′) , and U (N,R) = ∪(J,RJ )∈D(K,RK)J .

Proof of Claim 5:Pick a dependent component (J,RJ) of (K,RK).

We first show that J ∩ U (N,R) 6= ∅. Let ν ∈ E (N,R). By Claim 4, all overdemanded pairs

in O (N,R) are matched with underdemanded pairs in (N,R) in ν. Thus if for some j ∈ J , ν (j) ∈
O (N,R), then j ∈ U (N,R), and we are done. Suppose no pair in J is matched with an overdemanded

pair in ν. Since |J | is odd, J consists of only incompatible pairs, and pairs in J can be mutually

compatible outside J with only overdemanded pairs, then at least one pair in J is unmatched in ν.

This shows that J ∩ U (N,R) 6= ∅.

Since by Proposition 3 U (N,R) ⊆ U (N ′, R′), then J ∩ U (N ′, R′) 6= ∅. By the inductive

assumption we have U (N ′, R′) = ∪(J ′,R′
J′)∈D(K′,R′

K′)J
′. Moreover, by Claim 3 whenever one pair in

a dependent component of (K ′, R′K′) is underdemanded under (N,R), so are the pairs in the whole
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component. Last two statements and J ∩ U (N,R) 6= ∅ imply that (J,RJ) should include one or

more dependent components of (K ′, RK′).

We next prove that (J,RJ) should consist of only a single dependent component of (K ′, R′K′) :

Since (J,RJ) is connected, several dependent components of (K ′, R′K′) can form (J,RJ) only if some

overdemanded pairs of (N ′, R′) or c are also in J.

• Since c ∈ NC and (J,RJ) is a dependent component in (K,RK), then c 6∈ J .

• We next show that J ∩O (N ′, R′) = ∅ as follows:

First we show that none of the overdemanded pairs of (N ′, R′) is in U (N,R): Suppose not.

Pick x ∈ O (N ′, R′) ∩ U (N,R) . Let µ ∈ E (N,R) such that µ (x) = x. Then by Claim 2,

µ−c = µ \ {(c, µ (c))} ∈ E (N ′, R′). But then µ−c (x) = x, contradicting x ∈ O (N ′, R′).

Suppose that J ∩O (N ′, R′) 6= ∅. Since (J,RJ) is obtained after pairs in O (N,R) are removed

and O (N ′, R′) ∩ U (N,R) = ∅, then J ∩ O (N ′, R′) ⊆ P (N,R). Since (J,RJ) is connected,

J ∩O (N,R) = ∅, and perfectly matched pairs are not mutually compatible with any underde-

manded pair, we have J ⊆ P (N,R) , contradicting J∩U (N,R) 6= ∅. Hence J∩O (N ′, R′) = ∅.

Since none of these above two cases can happen, (J,RJ) should be a single dependent component

of (K ′, R′K′) implying that (J,RJ) ∈ D (K ′, R′K′).

We showed that D (K,RK) ⊆ D (K ′, R′K′) . This together with Claim 3 and the inductive as-

sumption imply that U (N,R) = ∪(J,RJ )∈D(K,RK)J. ♦

Claim 6: Part (3) of Proposition 4 holds for (N,R) .

Proof of Claim 6: Let (J,RJ) ∈ D (K,RK). Since by Claim 5 (J,RJ) ∈ D (K ′, R′K′) , then by the

inductive assumption Part (3a) of the proposition holds for (J,RJ), that is, for any j ∈ J , we can

match each pair in J\ {j} with another pair in J\{j} .
Let ν ∈ E (N,R). By Claim 2, ν−c = ν \ {(c, ν (c))} ∈ E (N ′, R′). Since by the inductive

assumption Part (3b) of the proposition holds for (N ′, R′) and ν−c, either exactly one pair j ∈ J

remains unmatched or is matched with an agent x ∈ O (N ′, R′), and all other pairs in J are matched

with another agent in J\ {j} in ν−c. We have two cases:

Case i. ν−c (j) ∈ O (N ′, R′). Then rν(j),j = 1. Since O (N ′, R′) ∩ U (N,R) = ∅, ν (j) 6∈ U (N,R),

implying in turn with j ∈ U (N,R) that ν (j) ∈ O (N,R).
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Case ii. ν−c (j) = j: Then ν (j) ∈ {c, j}. Consider the case ν (j) = c. We have rj,c = 1. Since c ∈ NC ,

c 6∈ U (N,R), implying in turn with j ∈ U (N,R) that ν (j) = c ∈ O (N,R).

Hence, ν (j) ∈ O (N,R) ∪ {j} , and Part (3b) of the proposition holds for (N,R). ♦

Claims 4, 5 and 6 immediately imply that Part (2) of Proposition 4 holds for (N,R) . ♦

5 Concluding Comments

Although we talked about the structure of the Pareto-efficient matchings, we did not propose a

computationally feasible method to find one. It turns out that an existent algorithm can be tailored to

find one. Edmonds (1965) proposed also another algorithm that can be used to find a maximal edge-

weighted matching. Economic translation of this problem conveys a two-way exchange environment

in which each mutually compatible pairs’ exchange is weighted by a number. This algorithm finds

a matching that maximizes the sum of weights’ of conducted exchanges in polynomial time. If we

weight the exchanges between a compatible pair and an incompatible pair by 1 and those between

incompatible pairs by 2, then we can use Edmonds’ weighted matching algorithm to find a Pareto-

efficient matching. Moreover, when we would like to minimize the number of matched compatible

pairs, we can increase the weights between mutually compatible incompatible pairs to 2+ε for some

sufficiently small and positive ε.

Our model also extends to another new paradigm in kidney exchange: exchanges initiated by

non-directed donors (NDD), i.e., donors who would like to donate one of their kidneys to a com-

plete stranger. The number of such donors has steadily been high in the last 5 years, about 100

donors per year in the US. Montgomery et al. (2006) reported exchange chains of incompatible pairs

i1, i2, ..., in initiated through NDDs, in which an NDD donates to i1’s patient, i1’s donor donates to

i2’s patient,...,in−1’s donor donates to in’patient, and finally, in’s donor donates to a high-priority

patient waiting in the deceased-donor list. Roth et al. (2006) proposed that these transplants in such

a chain need not be simultaneous unlike in paired kidney exchanges. If we start the transplantation

operations in the chain with the NDD end, then, even if one donor reneges, the patients who are yet

to receive a transplant can participate in other exchanges with their paired-donors, who have not yet

donated. Rees et al. (2009) reported a series of non-simultaneous continuing NDD-chain transplants,
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in which the donor of the end-pair of the chain plays the role of the NDD in the next batch of the

exchange run. In our model, If we treat NDDs as compatible pairs and are allowed to create one

pair-long NDD-chains, all our results in this paper will continue to hold in this domain.

In this paper, we stated a framework and properties of matchings for kidney exchanges including

compatible pairs. Our future research agenda includes designing mechanisms for this framework,

such as the priority mechanism we stated, and possibly implementing those in the field.
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