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Abstract

When will durable expenditures respond strongly to economic stimulus? We
build from micro evidence and show that in a heterogeneous agent business cy-
cle model with �xed costs of durable adjustment, responsiveness is substantially
dampened during recessions. Our model estimates imply that during the Great
Recession, durable expenditures were half as responsive to additional stimulus
as during the boom in the 1990s. This procyclical responsiveness is driven by
changes in the distribution of households�desired durable holdings over the cy-
cle. We directly test our model by estimating this distribution empirically using
PSID micro data and �nd that the distribution in the data moves cyclically as
predicted. In addition to this micro evidence, we also provide support for our
model�s procyclical responsiveness using aggregate time-series data, and we show
this time-series evidence is inconsistent with simpler models featuring smooth ad-
justment costs.

JEL Classi�cation: E21, E32, D91
Keywords: Durables, Fixed Costs, Consumption, Non-linear Impulse Re-

sponse

�We would like to thank our discussant, Rudi Bachmann. We would also like to thank Russell
Cooper, Ian Dew-Becker, Eduardo Engel, Marjorie Flavin, Jonathan Heathcote, Erik Hurst, Guido
Lorenzoni, Amy Meek, Giuseppe Moscarini, Aysegul Sahin, Tony Smith and seminar participants at
the NBER Summer Institute, University of Maryland, Mpls Fed, SED, Penn State, Yale, Univer-
sidad de Chile, the Cologne Macro Workshop, LACEA-Peru and PUC-Rio for valuable comments.
Correspondence: joseph.vavra@chicagobooth.edu.

1



1 Introduction

Durable expenditures contribute strongly to business cycle �uctuations. Figure 1

displays the decline in real durable expenditures,1 non-durable expenditures and GDP

during the Great Recession which began in 2007.2 Overall, the decline in durable

expenditures accounted for nearly half of the total decline in GDP. Thus, in a pure

accounting sense, stabilizing durable expenditures would have substantially reduced

the magnitude of the recession, and indeed, a number of policy interventions during

the Great Recession were speci�cally designed to stimulate durable demand.3

Figure 1: 2007 Recession
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Despite the prevalence of such policy interventions during recessions, little is known

1We de�ne durable expenditures as NIPA durable expenditures + residential investment. The
BEA treats durable and residential investment di¤erently, including housing services in GDP while
excluding durable services. In both our model and data analysis, we de�ne GDP as the sum of
non-durable expenditures excluding housing services, consumer durable expenditures, and private
domestic investment. All series are de�ated using NIPA price de�ators and are hp�ltered with
smoothing parameter 1600. See Appendix 1.

2Petev, Pistaferri, and Eksten [2012] also document consumption behavior during this period.
3For example, the Cash for Clunkers and First Time Home Buyers credit.
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about how their e¤ectiveness varies with the business cycle. In this paper we argue that

the demand response to durable stimulus is substantially dampened during recessions

so that focusing on the average response can be misleading.

To show this, we start from micro evidence that household level durable purchases

exhibit substantial inaction and lumpiness. We build a heterogeneous agent DSGE

model with �xed costs of durable adjustment that can capture this micro behavior, and

we show that these frictions matter for aggregate dynamics. Fixed costs of durable

adjustment change the average response of the economy to shocks and improve the

model�s �t for standard business cycle moments relative to RBC models which feature

frictionless durable adjustment. More importantly, we also show that household level

durable frictions have important interactions with the aggregate business cycle: non-

linearities in the household durable purchase decision induced by the �xed costs lead

aggregate durable expenditures to exhibit non-linear, state-dependent responses to

aggregate shocks. In particular, our model implies that during recessions, durable

expenditures will be substantially less responsive than during normal times to a variety

of aggregate shocks and stimulus policies.

Why do �xed costs change the aggregate dynamics of the model? It is well-

known (see, e.g. Fisher [1997]) that simple, disaggregated RBC models exhibit a

counterfactual negative comovement between investment in durables and investment

in productive capital. Aggregate productivity shocks change the return to investing

in durables relative to productive capital, and with no adjustment costs this leads to

a strong negative correlation between the two forms of investment. In addition, non-

durable expenditures in the disaggregated RBC model exhibit excess smoothness with

simulated volatility falling substantially short of what is observed in the data.

Fixed costs of durable adjustment help on both fronts. Unsurprisingly, adding an

adjustment cost to durable purchases �xes the comovement problem, as rapid switching

between di¤erent forms of saving becomes costly.4 In addition, �xed costs of durable

adjustment amplify the volatility of non-durable expenditures. This is because we

calibrate our model to match the fraction of household wealth held in durables, and

with �xed costs of durable adjustment, this portion of wealth becomes illiquid. Making

more wealth illiquid means that more households are e¤ectively borrowing constrained,

4Gomme, Kydland, and Rupert [2001] and Davis and Heathcote [2005] introduce features into the
RBC model that act like aggregate adjustment costs to �x the comovement problem. However, these
models do not match the household dynamics and non-linearities that we document.
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similar to the "wealthy hand-to-mouth" consumers in Kaplan and Violante [2011].5 In

their model, households can hold a liquid low-return asset or a high-return illiquid asset.

While they associate this illiquid asset with e.g., housing, they do not study the model

implications for durable purchases. In contrast, since our model explicitly models

illiquid durables, we generate additional predictions about the dynamic response of

durables to shocks.

An important implication of our model is that there are strong interactions be-

tween the cross-sectional distribution of household durable holdings and the response

of aggregate durable expenditures to shocks. Variation in this distribution over the

business cycle induces a state-dependent response to aggregate shocks and generates

our most important policy implications. Furthermore, we present detailed empirical

evidence using micro data to support this model implication.

Fixed costs of adjustment induce Ss dynamics into household durable purchase

decisions. Let zi;t = d�i;t � di;t�1 be the "gap" between a household�s current durable
stock and the value it would choose if it temporarily faced no adjustment costs. Given

a �xed cost of adjustment, it is only worth adjusting if zi;t exceeds some Ss thresholds.

Mechanically, this implies that time t aggregate durable expenditures are given by

Xt =
R
zi;tht (zi;t) f (zi;t) where ht (zi;t) is the adjustment hazard as a function of

the durable gap and f (zi;t) is the density of households with durable gap equal to

zi;t:
6 Thus, the response of durable expenditures to aggregate shocks at any point in

time depends crucially on the distribution of household durable gaps and on which

households adjust to those gaps.

In general, the more households that are adjusting (or close to adjusting) the more

responsize Xt will be to aggregate shocks. During expansions, the distribution of

durable gaps shifts to the right as households become richer. Furthermore, the distri-

bution of gaps has negative skewness due to depreciation so more households want to

purchase than to sell durables. This asymmetry means that during expansions more

and more households are pushed into the adjustment region, which leads aggregate

durable expenditures to become more responsive to aggregate shocks. In addition,

adjustment costs make up a smaller fraction of household resources during expansions

than during recessions so there is a shift in the adjustment hazard that ampli�es pro-

cyclical responsiveness.

It is important to note that this procyclical responsiveness does not depend on

5Campbell and Hercowitz [2009] and Chetty and Szeidl [2007] have similar mechanisms.
6For simplicity, we are ignoring maintenance at the moment.
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the sign of the aggregate shock. During expansions, durable expenditures rise more

in response to stimulus and fall more in response to contractionary policy than they

do during recessions. In general, contractionary policy will lead all households that

purchase durables to purchase less and will lead some households to delay purchases.

During booms, all of these e¤ects are ampli�ed since there are more households on the

margin of adjustment, so there is a greater response to the same contraction.

The magnitude of the time-varying responsiveness is quantitatively large. We

�t our model to U.S. data and �nd that the impulse response function (IRF) to a

positive TFP shock during the Great Recession is less than half the response to the

same shock if it had occurred during the 90s boom.7 We also simulate a temporary

subsidy to durable purchases which mirrors the "Cash-for-Clunkers" and "First-Time-

Homebuyers-Credit", and we �nd that durable expenditures respond more strongly to

the same subsidy during the boom than during the Great Recession. Finally, our

model implies a non-linear relationship between the size of stimulus and the aggregate

response of durable expenditures. Doubling the size of stimulus more than doubles

the aggregate response of durable expenditures. In contrast, in models without �xed

costs of durable adjustment there is no state-dependent IRF and there is a linear

relationship between the size of stimulus and the aggregate durables response. Our

model has important policy implications since it means that the IRF computed from

a linear VAR will substantially understate the true response to stimulus during booms

and substantially overstate the response during recessions.

Given the importance of this time-varying responsiveness, we search for additional

evidence of this phenomenon using household level micro data sets as well as aggregate

time series data. Overall, we �nd broad empirical support for a time-varying IRF.

Since the time-varying IRF that we document is driven by the interaction between

household durable gaps and adjustment hazards, we directly test this implication by

estimating the distribution of gaps and hazards across time using PSID micro data.

The obvious complication with this procedure is that d�i;t is unobserved in the data.

However, we exploit restrictions from the structural model to generate a mapping

between variables that we do observe in the data and d�i;t. This allows us to use PSID

data to empirically estimate the distribution of gaps and hazards, and we �nd that our

empirical estimates move over the business cycle as predicted.

7That our model mechanism generates procyclical responsiveness to policy shocks is important
in light of the separate literature arguing that in the presence of a binding zero lower bound, the
e¤ectiveness of �scal stimulus should be countercyclical.
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Finally, we also use a parsimonious time-series model to document that aggregate

durable expenditures exhibit conditional heteroscedasticity, with aggregate durable

expenditures exhibiting substantially greater volatility during expansions than during

recessions. The procyclical responsiveness in our model with �xed costs naturally

generates such conditional heteroscedasticity. In contrast, existing mechanisms that

improve the business cycle performance of disaggregated RBC models do not generate

conditional heteroscedasticity. Thus, in addition to providing a better �t for average

business cycle statistics than models with frictionless durable adjustment, our model

with �xed costs provides a better �t for household level micro data as well as additional

aggregate consumption dynamics.

There is a long line of literature studying models with durable consumption. Bax-

ter [1996] investigates the implications of durables for business cycles in a two-sector

representative agent framework. Mankiw [1982], Bernanke [1985] and Caballero [1990]

study the implications of durables for test of the permanent income hypothesis. Bertola

and Caballero [1990], Caballero [1993] and Eberly [1994] investigate stylized heteroge-

neous agent durables models with �xed cost of adjustment and argue that �xed costs

can help explain aggregate dynamics. Diaz and Luengo-Prado [2010], Luengo-Prado

[2006] and Flavin [2011] study similar questions quantitatively but the former paper has

no aggregate shocks and the latter papers abstract from general equilibrium. Leahy

and Zeira [2005] and Browning and Crossley [2009] argue that the timing of durable

purchases can insulate non-durable purchases from shocks.8 However, these papers

must make strong assumptions to obtain analytical results or to simplify the analysis,

and are thus less useful for quantitative analysis.

Our estimation of time-variation in household durable holdings builds on Eberly

[1994] and Attanasio [2000] who estimate the distribution of households�desired vehicle

holdings in stylized (S,s) models. However, our model allows for a richer earnings

process, borrowing constraints and general equilibrium. Furthermore, the restrictions

necessary to estimate these earlier papers do not hold in our model. Caballero, Engel,

and Haltiwanger [1995] perform a closely related exercise for business investment and

also argue that �xed adjustment costs are important for aggregate dynamics. In

addition, a large literature including Dunn [1998], Luengo-Prado [2006], and Krueger

and Fernandez-Villaverde [2010] has studied durable consumption in life-cycle models.

Perhaps most similar to our model is a recent working paper, Iacoviello and Pavan

8While this insulation margin is active in our model, we �nd that it is quantitatively small relative
to the illiquidity e¤ect.
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[2009]. They build a similar incomplete markets model with �xed costs of housing

adjustment and aggregate shocks, however they focus on di¤erent questions. While

our model is in�nite horizon, they instead build a life-cycle model, and computational

considerations then require an annual rather than quarterly frequency. As such, their

model is less suited for examining business cycle dynamics. They instead focus on

explaining secular changes in aggregate volatility. In addition, Bajari, Chan, Krueger,

and Miller [2010] estimate a micro model of housing demand and explore the response

of the economy to negative shocks but in partial equilibrium. A long line of literature

on lumpy investment has shown that general equilibrium forces can potentially undo

partial equilibrium results.

Finally, our paper relates to new literature using heterogeneous agent macro models

to examine policy at business cycle frequencies. For example, Kaplan and Violante

[2011] use similar models to study the consumption response to �scal stimulus.

The remainder of the paper proceeds as follows: Section 2 describes our benchmark

models and discusses their �t along standard business cycle dimensions. Section 3

discusses the model�s implications for time-varying impulse response functions. Section

4 tests our model using household level micro data. Section 5 provides time-series

evidence for a time-varying impulse response function, and Section 6 concludes.

2 Heterogeneous Households with Fixed Costs

It is well-known that household level durable purchases are infrequent and lumpy. In

PSID micro data only 2.2% of prime-age9 homeowners sell houses10 each year from

1999-2009. Households purchase automobiles more frequently than housing during

this time period, but even this broader notion of durables is only adjusted on average

every �ve years. Given this pervasive lumpiness, we then ask whether a model with

�xed costs of durable adjustment can jointly explain micro behavior together with

aggregate consumption dynamics.

918-65 years old.
10This is one-half the average value of the PSID "sold home" variable: [In the last two years], did

you (or anyone in your family living there) sell any home you were using as your main dwelling?
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2.1 Model Setup

Our model is similar to Krusell and Smith [1998] with the addition of household durable

consumption subject to �xed costs of adjustment. Households maximize expected

utility of a consumption aggregate, and they are subject to idiosyncratic earnings

shocks as well as borrowing constraints. Households solve

max
cit;d

i
t;a

i
t

E
X

�t

0B@
h
(cit)

v
(dit)

1�v
i1��

� 1
1� �

1CA
s:t:

cit = wth�
i
t + (1 + rt)a

i
t�1 + d

i
t�1 (1� �d)� dit � ait � F (dit; dit�1)

ait � 0; dit � 0
log �it = �� log �

i
t�1 + "

i
t with "

i
t � N(0; �z);

where cit, d
i
t and a

i
t are household i�s non-durable consumption, durable stock, and

assets, respectively. �it represents shocks to idiosyncratic labor earnings, h is a house-

hold�s �xed11 hours of work while wt and rt are the aggregate wage and interest rate.

Finally, F (dit; d
i
t�1) is the �xed proportional adjustment cost that households face when

adjusting their durable stock. We assume that F takes the form

F (d; d�1) =

(
0 if d 2 ((1� �d) d�1; d�1)

f (1� �d) d�1 else

This speci�cation implies that households can maintain their durable stock or let

part of it depreciate without paying an adjustment cost, but if they want to adjust

their durable stock by larger amounts then they must pay a �xed adjustment cost.

Thus, we allow households to engage in routine maintenance that does not incur a

�xed cost but assume that they must pay a cost when actually buying or selling their

current durable stock. We associate these �xed costs with explicit transaction costs12

together with time costs.

This adjustment cost speci�cation lies between two extremes that are common in

the literature. Under one extreme, households must pay the adjustment cost if d 6= d�1.
11Endogenizing hours complicates the model and does not a¤ect our main conclusions.
12Brokers fees, titling fees, etc.
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This speci�cation implies that households cannot let their houses depreciate without

paying a �xed cost. Alternatively, it is also common to assume that the adjustment

cost occurs if d 6= (1� �d) d�1: Under this speci�cation, households cannot maintain
their durable stock without paying an adjustment cost. While these alternatives

are somewhat simpler,13 we think that our speci�cation is likely to better capture

the realities of the costs associated with durable adjustment. Nevertheless, we have

experimented with these alternative speci�cations and it did not materially a¤ect our

results.

A representative �rm rents capital and labor and its �rst order conditions pin down

these prices:

wt = (1� �)ZtK�
t H

1��

rt = �ZtK
��1
t H1�� � �k

The only aggregate shock in the model, productivity, evolves as an AR process

logZt = �Z logZt�1 + �t:

As usual, equilibrium requires that the aggregate resource constraint

Ct +Dt +Kt+1 + Ft = ZtK
�
t H

1�� + (1� �k)Kt + (1� �d)Dt�1

be satis�ed, where

Kt =

Z
ait�1

Dt =

Z
dit

Ct =

Z
cit

Ft =

Z
F (di; di�1)

H =

Z
h�it:

13In these extreme cases, when households choose to not buy or sell durables, the consumption
decision becomes one dimensional. In our speci�cation, households must still choose how much to let
the durable stock depreciate.
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Solving the household problem requires forecasting aggregate prices and thus the

aggregate capital stock. Since the capital stock is determined by the continuous

distribution of household states, solving the model requires making computational

assumptions. Following Krusell and Smith [1998], we conjecture that after conditioning

on aggregate productivity, aggregate capital is a linear function of current aggregate

capital:14

Kt+1 = 
0 (Z) + 
1 (Z)Kt:

Given this conjecture, the in�nite horizon problem can be recast recursively in the

idiosyncratic state variables a�1; d�1; � and the aggregate state variables Z and K.

Households choose the upper envelope of a value function when adjusting and when

not adjusting, where we conjecture that each of these underlying value functions can

be well approximated linearly on a �ne grid.15 For a given aggregate law of motion we

then solve the contraction, simulate the household problem and update the aggregate

law of motion until convergence is obtained. In equilibrium, the aggregate law of

motion is highly accurate. See Appendix 2 for additional details on the solution

method as well as the full recursive value function.

2.2 Business Cycle Results

We now assess our model�s business cycle performance relative to a simpler incomplete

markets model with no durable adjustment costs as well as a frictionless RBC model

with durables. Table 1 shows our benchmark calibration. Our calibration strategy uses

a broad measure of the durable stock including both housing and consumer durables.

See Appendix 1 for discussion of our empirical moments.

14The forecasting rule might also depend on the previous durable stock. An earlier version of this
paper found that this added little explanatory power and had substantial computational cost.
15Linear interpolation gives speed advantages relative to cubic spline or other interpolation methods.

While linear interpolation will introduce kinks into the value function, we do not rely on derivative
based methods for solving the household problem, so this does not prove problematic.
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Table 1

Model Parameters

Parameter With Fixed Cost No Fixed Cost RBC

� 0.986 0.987 0.999

� 0.95 0.95 0.95

�z 0.008 0.008 0.008

� 0.3 0.3 0.3

�k 0.022 0.022 0.022

�d 0.022 0.022 0.022

� 2 2 2

� 0.73 0.74 0.73

h 0.33 0.33 0.33

�� 0.975 0.975 N/A

�� 0.1 0.1 N/A

f 0.025 0 N/A

The discount rate is picked to generate a quarterly interest rate of 1%, and we

assume risk aversion16 � of 2. The depreciation rate of capital �k = 0:022 is set to

match the long-run average investment to capital ratio. The average depreciation

rate of consumer durables is moderately higher than that of productive capital while

the depreciation rate of residential capital is somewhat lower, so in our benchmark

results we impose an intermediate value and set �d = �k. If anything, this is an

over estimate of the actual weighted depreciation rate, but using a higher depreciation

rate improves the business cycle performance of the frictionless models. Thus, our

calibration strategy gives the frictionless model its best chance of matching business

cycle moments, but the model still fails dramatically.17

The weight on non-durable consumption, v; is set to match an average ratio of

non-durable to durable expenditures18 of 4.0. We set the �xed cost of adjustment

16Raising � makes both non-durable expenditures and durable expenditures less volatile. With no
adjustment costs, we �nd that non-durable expenditures are too smooth while durable expenditures
are too volatile, so altering � cannot simultaneously improve the �t along both dimensions.
17Using lower values of �d little a¤ected any of our results for the model with �xed costs.
18A value of 4 may seem low relative to standard numbers from NIPA, but our measure of non-

durable expenditures excludes housing services while our measure of durable expenditures includes
residential investment. Increasing the target value did not a¤ect any of our qualitative conclusions.
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at 2.5%, so that households lose 2.5% of their durable stock when adjusting.19 The

idiosyncratic earnings process is calibrated to match annual labor earnings in PSID

data which yields a persistence of 0.975 and a standard deviation of 0.1.

Given these parameter choices, Table 2 shows our business cycle results. Appendix

2 shows that our results are robust to a range of reasonable parameter choices as well

as to relaxing the Cobb-Douglas utility speci�cation.

Table 2

Business Cycle Volatility

Data W/ Fixed Costs No Fixed Costs RBC

Standard Standard Standard Standard

Deviation Deviation Deviation Deviation

Relative to Y Relative to Y Relative to Y Relative to Y

Durable 3.04 2.81 14.22 13.71

Non-Durable 0.57 0.51 0.40 0.36

Investment 2.24 5.60 35.18 21.23

Why are durable expenditures and investment substantially too volatile in the mod-

els with no adjustment costs? It is because these models feature the comovement

problem identi�ed in Greenwood and Hercowitz [1991] and further explored in Fisher

[1997]. Aggregate productivity shocks change the return to investing in durables rel-

ative to productive capital. Increases in productivity make it more valuable to save

in productive capital, and the additional output produced can later be used to �nance

durable consumption. This generates a strong negative correlation between durable

expenditures and investment in models with no adjustment costs, which increases the

volatility of both variables. Table 3 shows the comovement between these two forms

19Diaz and Luengo-Prado [2010] reports that the typical fee charged by U.S. real estate brokers is
around 6%. Since other durable adjustment costs are smaller, we pick a lower value that implies
a quarterly adjustment frequency of just under 3%. This is higher than the empirical frequency of
housing adjustment but lower than that of vehicle adjustment. Our conclusions were not sensitive
to decreasing adjustment costs to 1% or raising them to 10% as long as � was also recalibrated.
Alternatively, one might pick the �xed cost to match data on the size of durable purchases, but this
adds computational burden and our parameter values generate purchases similar to the data, so this
procedure would not alter our conclusions.
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of investment in the data and models:

Table 3

Business Cycle Comovement

Data W/ Fixed Costs No Fixed Costs RBC

Correlation(IK;ID) 0.36 0.24 -0.90 -0.85

Clearly, the model with �xed costs generates a dramatic improvement in the cor-

relation between the two forms of investment as well as in the relative volatility of

these variables. This is because adjustment costs break the incentive to rapidly adjust

between saving in the two forms of capital. More interestingly, we also �nd that the

model with �xed costs is a substantially better �t for the volatility of non-durable

consumption. This is because the presence of adjustment costs on durables means

that a fraction of household wealth is illiquid. Since we keep the same level of total

wealth across models, more households are temporarily liquidity constrained in the

model with �xed costs since much of their wealth is illiquid. These households are

similar to the wealthy hand-to-mouth households emphasized in Kaplan and Violante

[2011].20 While households may have a large amount of total wealth, households ratio-

nally choose to avoid paying �xed costs associated with using illiquid wealth to smooth

non-durable consumption. In their model, wealth is illiquid because households put

some wealth into an illiquid higher return investment while in our model, wealth is

illiquid because households want to consume durables, which are subject to adjust-

ment costs. While the general mechanism is similar, we have additional panel data

on income, durable and non-durable expenditures and wealth, which allows us to test

directly for this mechanism.21

We conclude this section by noting that �xed costs of adjustment are not the only

mechanism that can solve the comovement problem and improve the business cycle

volatility of consumption.22 Gomme, Kydland, and Rupert [2001] add time-to-build

20Angeletos, Laibson, Repetto, Tobacman, and Weinberg [2001] generate similar consumption be-
havior through hyperbolic discounting.
21In ongoing work we explore the role of illiquid durables for estimates of household insurance.
22Another force that could dampen durable volatilty and amplify non-durable volatility would be

movements in the relative price of these two forms of consumption. If the relative price of durables
is procyclical, then this would dampen durable movements over the cycle. While this mechanism
might seem important for the Great Recession, recall that our business cycle statistics are calculated
over the broader period from 1960-2012, during which the relative price of durables is actually mildly
countercyclical. Thus, while procyclical relative prices could improve the real business cycle perfor-
mance of the frictionless model, such price movements are counterfactual. Matching empirical price
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to a disaggregated model while Davis and Heathcote [2005] introduce a �xed factor

of production. These model features end up acting like aggregate adjustment costs

and so they help to improve the comovement of disaggregated investment components.

Indeed, we �nd that by introducing quadratic adjustment costs into the RBC model,

we can also better match the average response to shocks.

However, we think �xed costs of adjustment are more attractive for two separate

reasons. First, we bring a wealth of micro data to bear in testing our model that is

unavailable for representative agent models: there is substantial evidence for lumpy

durable adjustment in micro data which will not be replicated by convex adjustment

costs. In addition, we will show that models with �xed costs of adjustment imply con-

ditional heteroscedasticity for aggregate durable expenditures: the residual variance

of durable expenditures is substantially larger during booms than during recessions.

We will show shortly that this prediction is supported by U.S. time-series data. In

contrast, models with smooth aggregate adjustment costs do not generate such het-

eroscedasticity. Thus, in addition to being a good �t for the average response to

shocks, our model will be consistent with the empirical time-variation around that av-

erage. Nevertheless, we view our analysis as complementary to the existing literature

rather than in direct competition with it. Nothing precludes both smooth and non-

convex adjustment costs from being simultaneously present, but we explore how far we

can get with non-convex adjustment costs alone.

3 Non-Linear Dynamics

We now show that in addition to better matching business cycle moments, �xed costs

of durable adjustment also induce impulse responses that vary with the state of the

economy. Since �scal stimulus is typically timed during recessions, assessing the

response of durable expenditures to aggregate shocks during recessions is of particular

importance. Indeed, we �nd that durable expenditures are signi�cantly less responsive

to changes in aggregate conditions during recessions than during booms.

How do we de�ne a boom and a recession in our model? In order to replicate U.S.

time-series data in general, and the Great Recession in particular, we hit the economy

with two aggregate shocks. We �rst pick the aggregate TFP shocks in the model to

match observed Solow Residuals in aggregate data. We then hit the simulated economy

movements over the business cycle would exacerbate the model �t.
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Figure 2: Recession Simulation Models vs Data
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with an additional unanticipated 4 percent decline in the capital stock in the fourth

quarter of 2008.23 We choose these particular shocks because they capture salient

features of the recession from households� perspectives.24 The one-time decline in

capital yields a decline in household wealth while the decline in TFP leads to a decline

in household earnings, both of which make households more borrowing constrained.

We pick the magnitude of the capital shock to roughly match the declines in capital

actually observed in the most recent recession.

How well do our models do at matching the dynamics of consumption during the

Great Recession? Figure 2 shows that the model with �xed costs closely matches the

Great Recession, in contrast to the model with no �xed costs. In the model with

no �xed costs, the decline in durable expenditures is an order of magnitude too large

relative to the data while non-durables decline too little. Again, the model with no

adjustment costs does a bad job of matching the dynamics of consumption.

23We have also experimented with shocks to the durable stock, but we believe these map less
naturally into the recession. The decline in housing value was largely a decline in the price of housing
rather than a decline in the real stock of housing. Furthermore, large declines in the housing stock
lead to counterfactual housing booms.
24In ongoing work, we also explore the implications of countercyclical earnings uncertainty. With

�xed costs, greater uncertainty has the potential to further depress durable responsiveness.

15



Figure 3: State-Dependent Impulse Response of Aggregate Durable Expenditures
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Since the model with �xed costs of adjustment does a good job of replicating time-

series behavior, we can then ask whether it implies an IRF that varies with the state

of the economy. Figure 3 shows the IRF to a one standard deviation increase in TFP

in 1999 and compares it to the IRF calculated in a 2009.25 The impulse response is

much larger during the 90s than during the Great Recession. The cumulative impulse

response in 1999 is roughly twice that in 2009.

It is interesting to look at impulse responses to TFP shocks since these are the

driving shocks in our model. However, while one can imagine government policies that

might look like increases in TFP, it is also interesting to model stimulus policies that

were actually implemented during the Great Recession. Towards that end, we next

investigate the response of the economy to a one-time subsidy to durable purchases

modeled after the "Cash-for-Clunkers" and "First-Time-Home-Buyers" credit. In

particular, we assume that in the period of the stimulus, households face a one-time

25The hump-shaped IRFs eventually return to zero. Interestingly the hump-shape is consistent
with the impulse response of aggregate durable expenditures to observed changes in TFP in the data.
The hump-shape arises due to equilibrium movements in the interest rate across time. On impact,
as TFP increases, interest rates rise, which increases �nancial income as well as the return to saving
in liquid assets. So initially, most of the increase in savings goes into liquid assets. However, as
additional capital is accumulated, the return to saving in liquid assets falls and households begin to
accumulate more in durable assets so that the response of durable expenditures grows with time. As
the TFP shock dies out, this process reverses itself and the economy returns to steady-state.
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Figure 4: State-Dependent Impulse Response to Durable Subsidy
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subsidy so that their new budget constraint is given by

cit = wth�
i
t + (1 + rt)a

i
t�1 + d

i
t�1 (1� �d)� dit � ait � A(dit; dit�1) + s

�
dit � dit�1

�
;

where the last term re�ects a durable subsidy.26 After this one-time shock, we assume

that the economy returns to the ergodic steady-state and households then use their

original value functions to determine optimal behavior. This is a strong assumption,

but it has large computational advantages relative to computing a transition path to

the ergodic distribution, and it is likely to hold approximately for small values of the

subsidy. In our benchmark results, we use a subsidy value of 1%, which is in line

with the actual size of the stimulus programs after accounting for eligibility and phase-

outs.27 In addition, we evaluate the validity of our Krusell-Smith forecasting rule after

the one-time shock and �nd that its accuracy is only mildly reduced.

Figure 4 shows that durable expenditures respond much more strongly to the

durable subsidy if it occurs during a boom than during a recession. Interestingly,

26Modeling the government sector in detail is beyond the scope of this paper, but this subsidy could
be �nanced by a one-time reduction in unmodeled steady-state government expenditures.
27We view a 1% shock as a reasonable approximate to actual policies. The Cash-For-Clunkers

program provided subsidies of roughly 15%, but less than 5% of total purchases were made under the
program. The First-Time-Home-Buyers credit as a fraction of the mean home price in 2008 was 2.7%
but only households that had not purchased a primary residence in the last three years were eligible.
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we also �nd that much of the e¤ect of the subsidy is undone in the ensuing periods, as

household purchases are pulled forward from the near future by the stimulus. This is

similar to the empirical result found in Mian and Su� [2012]�s evaluation of the Cash-

for-Clunkers Program. Nevertheless, we still �nd that both the e¤ect of the subsidy

on impact as well as the cumulative response are very procyclical.

Why does our model generate a procyclical IRF? Fixed costs of adjustment im-

ply that an individual household�s response to aggregate shocks is highly non-linear.

Households are hit with various shocks, and the presence of �xed adjustment costs gen-

erates a gap between a household�s current durable holdings and the durable holdings

it would choose if it temporarily faced no adjustment costs. When this gap is small,

it is not worth paying the �xed cost of adjustment. As this gap becomes large, it

becomes optimal to pay the �xed cost and adjust. Thus, �xed costs induce lumpiness

into adjustment, and changes across time in the fraction of households choosing to

adjust can induce signi�cant time-variation in aggregate durable expenditures. Let

zi;t = d�i;t � di;t�1 be the "gap" between a household�s current durable stock and the
value it would choose if it temporarily faced no adjustment costs. Mechanically, time

t aggregate durable expenditures are given by Xt =
R
zi;tht (zi;t) f (zi;t) where ht (zi;t)

is the adjustment hazard as a function of the durable gap and f (zi;t) is the density of

households with durable gap equal to zi;t:28

What determines the response of Xt to aggregate shocks that increase households�

desired during holdings by �d�? The total response of Xt can be decomposed into two

components. The �rst component is the intensive margin: conditional on adjusting,

households will choose durable holdings that are �d� larger than before the aggregate

shock. The second component is the extensive margin: some households close to

increasing durables will be pushed into action by a positive shock, and some households

who previously would have sold durables instead choose inaction.

When will these margins be more important? The intensive margin response

increases with the frequency of adjustment. The more households that are adjusting

before the aggregate shock, the greater the response to that shock along the intensive

margin. The extensive margin response to a shock will be more important when more

households�adjustment decisions are changed by that shock. This will be true when

more households are in the upward sloping region of the hazard function ht (zi;t).

During a boom, both of these margins become more important, and so aggregate

28Where the gaps and hazards are de�ned relative to durable holdings after maintenance so that
Xt is durable investment excluding maintenance.
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Figure 5: Boom and Recession: Distribution and Adjustment Hazard
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durable expenditures become more responsive to aggregate shocks. Figure 5 plots the

distribution of durable gaps and adjustment hazard in a boom and in a recession, for

the model with �xed costs of durable adjustment. The distribution of durable gaps is

skewed right because depreciation means that more households want to increase than

to decrease durable holdings. During the boom, households�desired durable holdings

rise so that the distribution of durable gaps shifts to the right, and more households

are pushed into the steep part of the hazard function.

Furthermore, households are more likely to adjust up and less likely to adjust down

for a given durable gap (as can be seen by the shifting hazard in Figure 5). The shift

in the hazard is a combination of two forces. During recessions, �xed costs represent a

larger fraction of household wealth, so adjustment to both positive and negative gaps

is reduced. However, households are also more likely to hit the borrowing constraint,

which increases the probability of adjustment to negative gaps. The net e¤ect is a

decrease in the probability of increasing and an increase in the probability of decreasing.

Together, this increase in the mass of households adjusting as well as in the mass of

households close to the margin of adjustment leads to an increase in both the intensive

and extensive margin response to aggregate shocks so that total responsiveness rises.29

29Note that aggregate durable expenditures become more responsive to both positive and negative
aggregate shocks during booms. During a boom, more households are in the region with a steep
hazard of adjustment, and these households become more responsive to both positive and negative
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Figure 6: No State-Dependent IRF without Fixed Costs
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This time-variation in distributions and hazards induced by �xed costs leads to

a procyclical IRF, but there are other features of the model that could also lead to

time-varying IRFs. We now argue that it is the �xed costs that are quantitatively

important for our aggregate dynamics rather than these alternative features. In partic-

ular, household borrowing constraints also introduce non-linearities, and the particular

sequence of shocks might introduce GE e¤ects that matter for aggregate dynamics.30

However, we can show that neither the sequence of shocks nor the presence of

borrowing constraints is driving our procyclical IRF by recomputing impulse response

functions for an otherwise identical model with borrowing constraints but with no costs

of durable adjustment. Figure 6 shows that there is essentially no di¤erence between

the IRF at di¤erent points in time in the model with no adjustment costs. This implies

that it must be the �xed costs of adjustment that drive our procyclical IRF.

Thus, even with relatively small �xed costs, our model delivers aggregate dynamics

that di¤er sharply from models with frictionless durable adjustment. This stands in

aggregate shocks. Our model implies a state-dependent IRF, not an asymmetric IRF. While we
suppress the results for brevity, we �nd that the IRF is greater to a durable tax during booms than
during recessions.
30In particular, the d� may respond di¤erently to shocks in a recession, when aggregate income is

low and more households are close to hitting their borrowing constraint, than when aggregate income
is high and most households are unconstrained.
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stark contrast to the debate in the investment literature between Khan and Thomas

[2008] and Bachmann, Caballero, and Engel [2010] that �nds that large adjustment

costs are necessary to generate aggregate non-linearities. What di¤erentiates our model

from this previous work? In both Khan and Thomas [2008] and Bachmann, Caballero,

and Engel [2010], the representative household can only save in one asset, productive

capital. If �xed costs on the �rm side of the model generate results for investment that

di¤er dramatically from the frictionless model, this necessarily implies that households

must also face consumption that di¤ers dramatically from the frictionless environment.

In equilibrium, household consumption smoothing has large quantitative e¤ects on the

interest rate that dampen the e¤ects of �xed costs.

In contrast, in our model, households can save in two assets: productive capital and

durables. Non-linearities in durable expenditures can then be absorbed by movements

in capital rather than movements in consumption, so even small �xed costs of durable

adjustment can have big e¤ects on aggregate dynamics without inducing huge e¤ects

on consumption dynamics.31

Thus our model suggests that �xed costs may lead durable stimulus to be less

e¤ective during recessions than suggested by linear VAR evidence. This has impor-

tant implications for policy makers. For example, both the "Cash-for-Clunkers" and

"First-Time-Home-Buyers-Tax-Credit" were enacted to stimulate durable expenditures

during the most recent recession. However, since responsiveness was relatively low,

this likely dampened the e¤ects of each program. Conversely, if each program led to

an increase in durable demand and pushed more households towards an active region

of adjustment, then the total e¤ect of the two programs was likely greater than the

sum of the individual programs in isolation. We �nd support for such non-linearities

by computing the IRF to shocks of varying sizes: doubling the size of the TFP shock

or durable stimulus triples the cumulative impulse response.

4 Household Micro Data

Given the important policy implications of these non-linearities, we now look for direct

evidence that the cross-sectional distribution of household durable demand moves in

the manner predicted by our model. The obvious di¢ culty with constructing an

31As noted previously, we do �nd that �xed costs amplify non-durable volatility, but the magnitude
of this e¤ect is much smaller than in a model with �xed costs of investment and no GE e¤ects.
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empirical counterpart to Figure 5 is that "durable gaps" are not observed in micro data.

However, our structural model imposes strong restrictions on the relationship between

variables which are observed in micro data and durable gaps, which are observed in the

model but not in the data.32 We use the model to estimate a �exible functional form

that relates d�1; c; and a to the durable gap and �nd that these variables are su¢ cient to

explain more than 99% of the variation in durable gaps in the model. After estimating

the relationship in the model, we apply the same relationship to measures of d�1; c;

and a in PSID data, which allows us to estimate the empirical cross-section of durable

gaps for the PSID from 1999-2009.

Once we have estimated this distribution, we can test our empirical �t by estimating

the probability that a household actually adjusts its durable stock, conditional on our

imputed durable gap. We �rst test the overall predictive power of our model and then

discuss implications for variation over the business cycle as in Caballero, Engel, and

Haltiwanger [1997]. See Appendix 3 for more detailed discussion.

Figure 7: Estimated Gaps and Hazard, PSID
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Figure 7 shows estimated gaps and hazards for the PSID data, pooling across all

32Our empirical strategy in general is similar to that in Eberly [1994], but we have a more compli-
cated empirical model that does not require us to exclude borrowing constrained households. Fur-
thermore, we test the predictive power of our estimated durable gaps for the actual probabilities of
adjustment, and �nd an upward sloping adjustment hazard as predicted by our model. In contrast,
Eberly [1994] imposes and estimates a single adjustment threshold.
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years. Given that our model is abstracting from life-cycle considerations and many

other idiosyncratic taste shocks that will a¤ect durable adjustment, the �t between the

model and the data is remarkably strong. Our estimated durable gaps have strong

predictive power for the actual probability of adjustment. The empirical probability of

adjustment rises from approximately 20% for a durable gap of zero33 to more than 50%

for a durable gap of 0.5.34 In contrast, if the model we used was uninformative for

actual household behavior, we would �nd no relationship between estimated durable

gaps and the empirical adjustment hazard.

Figure 8: Estimation Based on Constant Ratio of Liquid Wealth
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Indeed, in addition to our benchmark model, we can redo this estimation proce-

dure using alternative models of durable consumption. In particular, Grossman and

Laroque [1990] build a model of optimal durable consumption with �xed costs that im-

plies that all households maintain a constant ratio of d=a when adjusting their durable

stocks. We repeat our estimation procedure using a generalized version of this model

where we allow for household level heterogeneity in the optimal ratio of liquid and

33While the 20% hazard at zero may appear to be a failure, it is worth noting that our adjustment
measure is calculated over a two-year period while our gap measure is instantaneous, so a positive
probability at a gap of zero may re�ect a positive gap at some other point during the two year period
which led to adjustment. Overall, our model has better predictive power for upward adjustments
than for downward adjustments. This likely re�ects irreversibilities in the data which we have not
modeled.
34Bootstrapped 90 percent con�dence intervals in gray.
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illiquid wealth. Figure 8 shows that, not only does this model generate strange distri-

butions of implied durable gaps, these gaps also have essentially no predictive power

for actual household durable adjustment. The point estimate for the hazard rises from

only 24% to 28% over the range of durable gaps, and the 90% con�dence intervals show

that a �at hazard cannot be rejected. Thus, the close match between our benchmark

model and our PSID estimates is not a result of using our model restrictions to im-

pute durable gaps and is indeed a strong test of the model. Figure 8 shows that this

procedure need not yield self-con�rming results.

In addition to these results using PSID data, we have also repeated the analysis

using household panel data from the Italian Survey of Household Income and Wealth.35

While our model is estimated to match aggregate U.S. data, similar forces are likely

to apply in other countries as well. Again, Figure 9 shows that our model generates

durable gaps with strong predictive power for actual adjustment, in contrast to the

simpler alternative model.

Figure 9: Estimates Using SHIW Data
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Benchmark Model

Now that we have shown our model provides a good empirical �t for household

micro data on average, we test whether the estimated distributions and hazards move

over the business cycle in the way predicted by our model. Figure 10 compares the

35To our knowledge, this is the only other data set that contains the requisite variables.
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estimates from the PSID data to the predictions from our model. We �nd that both

the empirical distribution of durable gaps as well as the corresponding adjustment

hazards shift between 1999 and 2009 in a way that is remarkably consistent with

our model.36 Thus, there is strong empirical evidence that both the distribution of

households�durable gaps and adjustment probabilities move in the manner necessary

to generate a procyclical IRF.37

Figure 10: Distributions and Hazards Model Vs. PSID
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5 Aggregate Time-Series Evidence

In addition to the test of our model using household panel data, we also look for

additional evidence of a time-varying IRF that does not rely on a particular structural

model. We now provide simple time-series evidence that the response of durable

expenditures to aggregate shocks is systematically weaker during recessions than during

36Appendix 3 shows that the di¤erences across time are statistically signi�cant.
37While Figure 3 shows that the IRF on impact is only a partial summary of the di¤erences in the

cumulative IRFs, we can nevertheless compute the IRF on impact implied by our PSID estimates,
and we �nd that the implied IRF on impact is nearly 30 percent larger in 1999 than in 2009.
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booms. While one could imagine many ways to explore this question, we proceed in

a parsimonious manner that is agnostic about the underlying structural model.

In particular, we follow Bachmann, Caballero, and Engel [2010] and estimate a

two-stage time-series model. In the �rst stage, we estimate an AR process for durable

expenditures. Then, in the second stage, we regress the absolute value of the �rst

stage residuals on the average of lagged durable expenditures to assess whether resid-

ual variance di¤ers during durable expansions. (See Appendix 1 for details). We �nd

clear evidence that aggregate durable expenditures exhibit conditional heteroscedas-

ticity, with durable expenditures exhibiting much larger (absolute) residuals during

expansions. Figure 11 shows that our estimates of residual variance rise dramatically

with previous durable expenditures.38

Figure 11: Conditional Heteroscedasticity
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Why does greater variance during expansions imply that durable expenditures are

more responsive to shocks during expansions? In principle, conditional heteroscedas-

ticity could arise for two reasons: (1) Aggregate shocks are of constant variance but

durable expenditures respond more to these shocks during booms than during reces-

sions. (2) The size of shocks during booms is greater than during recessions.

38Bootstrapped 90 percent con�dence interval in gray.
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Appendix 1 shows that while durable expenditures exhibit conditional heteroscedas-

ticity, there is no evidence for heteroscedasticity for either productivity or monetary

shocks. Thus, there is no evidence for heteroscedasticity of shocks commonly used in

business cycle models. Furthermore, aggregate GDP does not exhibit conditional het-

eroscedasticity. Since aggregate shocks a¤ecting durable expenditures and total GDP

should be similar, our evidence supports the �rst explanation: durable expenditures

become more responsive to aggregate shocks during booms.

We �nd similar e¤ects in our model with �xed costs. Appendix 1 presents estimates

of conditional heteroscedasticity for the model with �xed costs of durable adjustment

as well as for models with no adjustment costs and for an RBC model with convex

adjustment costs. The model with �xed costs of durable adjustment implies condi-

tional heteroscedasticity that is in line with the empirical estimates, in contrast to

the alternative models without �xed costs. Conditional heteroscedasticity arises in

the model with �xed costs despite the fact that the shocks are of constant variance

precisely because �xed costs of adjustment lead to a procyclical IRF.

6 Conclusion

It is widely recognized that there are substantial �xed costs of durable adjustment.

Nevertheless, business cycle models with �xed costs of durable adjustment have received

limited attention due to their computational complexity. In this paper, we argue that

while the introduction of �xed costs of adjustment is computationally challenging, it

is not intractable, and it provides a signi�cantly better �t for both macro and micro

dynamics. An incomplete markets model with �xed costs and aggregate shocks is able

to match the decline in durable expenditures in the Great Recession as well as business

cycle volatilities more generally. In addition, since durable holdings are also a form

of household wealth, �xed costs of adjustment make a fraction of wealth illiquid and

costly to adjust. Since some households have large durable holdings with small levels

of liquid wealth, this ampli�es the response of non-durable consumption to shocks and

implies that the model is able to match the relatively large decline in non-durable

expenditures during the recession.

More importantly, introducing realistic adjustment costs is important for evaluating

the e¢ cacy of �scal stimulus. Fixed costs of durable adjustment induce signi�cant non-

linear impulse responses of aggregate durable expenditures to shocks. Our estimates
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imply that during the Great Recession, durable expenditures were half as responsive

to stimulus as during the late 90s. This time-varying IRF induces conditional het-

eroscedasticity of aggregate durable expenditures: the residuals from an AR process

for durable expenditures are greater during booms than during recessions. We show

that such conditional heteroscedasticity is present in actual U.S. time-series data.

The procyclical IRF in the model is driven by changes in the distribution of house-

holds�desired durable holdings over the cycle. During a boom, households have more

pent-up durable demand and are more likely to adjust their durable holdings. We test

this implication of our model by estimating the empirical distribution of households�

desired durable holdings and �nd that the empirical distribution moves as predicted.

Thus, micro data is consistent with a large time-varying IRF, as implied by our model.
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7 Appendix 1: Empirical Results

7.1 Data Adjustments and Construction

We de�ne durable expenditures as real consumer durable expenditures + real residen-

tial investment where real consumer durables are NIPA Table 1.1.5 line 4 divided by

NIPA Table 1.1.9 line 4 and real residential investment is NIPA table 1.1.5 line 12

divided by NIPA Table 1.1.9 line 12. Non-durable consumption is de�ned as non-

durable goods (NIPA Table 1.1.5 line 5 divided by NIPA Table 1.1.9 line 5) + services

(Table 1.1.5 line 6 divided by Table 1.1.9 line 6) - housing services (Table 2.3.5 line 14

divided by Table 2.4.4 line 14). Our measure of GDP is then the sum of non-durable

consumption, durable expenditures and private non-residential investment..

We have also experimented with using analogous constructions with chained GDP

rather than constructing real GDP with the GDP de�ator. However, the necessary

chained GDP components are only available going back to 1995. Nevertheless, the

results for the most recent recession are similar. In addition, it should be noted that

due to the construction of the price de�ators, the real series constructed by de�ating

the nominal series individually do not add up to the aggregate real series. This

issue is more problematic the further from the base year we move. Since the current

NIPA data uses 2005 as the base year, this is likely to introduce only small errors

into our results for the most recent recession, but it makes the older series somewhat

less reliable. The business cycle volatilities we estimate are sensitive to the exact

procedure used to construct the individual consumption components (e.g. using non-

durable consumption + services - housing services to get our measure of non-durable

consumption does not obtain the exact same series as using PCE - housing services -

durable expenditures even though these two measures contain the same components).

These series are nearly identical in the 2000s, but diverge as we move further back in

time.

Constructing durable expenditure rates requires constructing quarterly measures of

the durable stock. Following Bachmann, Caballero, and Engel [2010], we construct

measures of real quarterly durable expenditures using nominal data from BEA Do-

mestic Product and Income Tables 1.1.5 and price de�ators from Table 1.1.9. We

then next construct quarterly depreciation estimates using annual nominal measures

of depreciation from BEA Fixed Asset Table 1.1 together with the price de�ators from

Table 1.1.9. Since the BEA publishes annual measures of the stock of durables and
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housing in Fixed Asset Table 1.1, we just need to construct quarterly measures in

between these annual observations. To do this, we combine the annual observations

with the quarterly expenditure and depreciation measures together with a standard

stock accumulation expression to construct quarterly stock measures. See Bachmann,

Caballero, and Engel [2010] for the more detailed procedure.

7.2 Conditional Heteroscedasticity

In this section we show that durable expenditures exhibit conditional heteroscedasticity,

rising in booms and falling in recessions. As in Bachmann, Caballero, and Engel [2010],

we assume that our series of interest can be described by an AR process:

xt =

pX
j=1

�jxt�j + �tet;

where xt � ID
D
is durable expenditures divided by the durable stock,39 et �i.i.d.

with zero mean and unit variance, and

�t = �+ �xt�1

xt�1 =
1

k

kX
j=1

xt�j:

That is, we allow the variance of the residuals in the AR process for durable ex-

penditures to vary with past durable expenditures. This speci�cation implies that the

impulse response of x to e on impact at time t is given by �+ �xt�1. If � = 0 then the

impulse response of x to e does not vary with past durable expenditures while � > 0

implies that the IRF rises with lagged expenditures.

We estimate the time-series model using quarterly data on ID
D
from 1960-2010. The

estimation follows a 2-stage procedure. In the �rst stage, we estimate the AR process

via OLS to obtain residuals "t: The second stage then estimates by OLS � using

j"tj =
�
2

�

�1=2
(�+ �xt�1) + error:

We repeat the estimation for all combinations of p; k � 12 and choose the best �t,
39The ratio of durable expenditures to the stock is stationary while durable expenditures are not.
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p�; k� using AIC. For more details on the time-series model, see Bachmann, Caballero,

and Engel [2010].40 Table 6 contains the time-series estimates. Both total durable

expenditures as well as residential investment exhibit strongly signi�cant41 � > 0. The

estimated � > 0 for consumer durables, but it is only marginally signi�cant. While

� > 0 implies that there is a statistically signi�cant increase in the IRF with lagged

expenditures, it does not imply that the increase is economically signi�cant. In the

4th and 5th rows of Table 6, we report statistics that show that there is quantitatively

large variation in the IRF across time. The maximum IRF is 2.82 times larger than the

minimum IRF while the 95th percentile is 1.82 times higher than the 5th percentile.

Thus, the estimated heteroscedasticity is both statistically and economically signi�cant.

Table 6

Conditional Heteroscedasticity Data

Series: Total Dur. Exp. Resid. Cons. Dur. Non Dur. GDP TFP FF

� : 0.05 0.03 0.04 -0.003 0.002 -0.11 0.03

t-� : 2.63 2.04 1.52 -1.33 0.84 -1.40 0.83

Bootstrap p-value (� > 0) : 0.007 0.03 0.04 0.83 0.25 0.86 0.56

� (�max=�min) : 2.82 2.52 1.67 1.85 1.25 1.61 3.89

� (�95=�5) : 1.82 1.65 1.59 1.39 1.20 1.35 1.12

no. obs. : 192 192 192 192 192 192 630

Table 7

Conditional Heteroscedasticity Models

Series: RBC RBC Adj Costs No Fixed Costs W/ Fixed Costs

� : -0.02 -0.003 0.02 0.08

t-� : -0.34 -0.14 0.42 2.13

� (�max=�min) : 1.25 1.24 1.17 1.83

� (�95=�5) : 1.15 1.14 1.11 1.49

It is important to note that while we have interpreted conditional heteroscedasticity

as a time-varying impulse response to aggregate shocks with a constant variance, an

alternative interpretation is that aggregate shocks themselves are larger during booms

40In addition to the model we presented, their paper presents an alternative time-series model. We
obtained similar results for this model, so for brevity we did not report these results.
41The bootstrap p-value row constructs bootstrapped p-values for � > 0; accounting for the fact

that errors in the �rst stage estimation increase the standard errors in the second stage.
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than during recessions. We test for this by performing the same regressions on Baxter-

King bandpass �ltered GDP.42 Table 6 shows that, as in the estimates in Bachmann,

Caballero, and Engel [2010], there is no evidence of conditional heteroscedasticity for

GDP. Presumably the aggregate shocks hitting Y should be similar to the aggregate

shocks hitting D, so we interpret our results as evidence that it is not the shocks that

drive heteroscedasticity, and is rather the mechanism that translates those shocks into

durable expenditures that drives our estimates. As further evidence for this point, we

also estimate the time-series model for changes in TFP43 as well as the Federal Funds

rate.44

To construct Figure 11, we allowed for a more �exible non-parametric second stage.

We also bootstrapped the procedure to construct corresponding con�dence intervals.

To do this, we redraw residuals from the �rst stage to create one-thousand bootstrap

samples when estimating the non-parametric second-stage. We tried a variety of

bandwidths for the second-stage kernel estimator, and it did not change the qualitative

conclusions.

In addition to these empirical estimates, we also compute heteroscedasticity esti-

mates for our simulated models. Since we know that the true shocks in the model follow

an AR(1) process, we report benchmark results restricted k = 1; p = 1, but results are

not sensitive to this restriction. Table 7 shows that the frictionless model does not

generate procyclical IRFs. If anything, the model without �xed costs implies � < 0:

In contrast, the model with �xed costs exhibits conditional heteroscedasticity that is

in line with the empirical estimates. The estimated � > 0, and the time-variation in

the impulse response on impact is similar to that in the data.

8 Appendix 2: Model Solutions

8.1 RBC Model

The RBC model (for the Cobb-Douglas case) has the following �rst order conditions:

42Unlike expenditure rates, GDP is non-stationary and so must be �ltered. Using alternative �lters
did not substantively change the results.
43Available at http://www.frbsf.org/economics/economists/jfernald/quarterly_tfp.xls
44To increase the sample size we use monthly FF rates. While we could also use FF residuals or

surprises, it is likely that the actual rate is more relevant for durable purchases as households should
respond to both the anticipated and unanticipated component.
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Ct : vCv�1t D1�v
t

�
CvtD

1�v
t

���
= �t

Kt+1 : �t = �E

�
�t+1

�
�
Yt+1
Kt+1

+ (1� �k)
��

Dt : �t = (1� v)D�v
t C

v
t

�
Cvt d

1�v
t

���
+ �E�t+1(1� �d)

The steady-state equations (�xing Z = 1) are then given by

Y = K�

� = vCv�1D1�v �CvD1�v���
1 = �

��
�
Y

K
+ (1� �k)

��
� = (1� v)D�vCv

�
CvD1�v��� + ��(1� �d)

C = ZK� � �kK � �dD

Solving for the steady-state gives:

C

D
=

v(1� �(1� �d))
1� v (1)

K =

�
1

�

�
1

�
� (1� �k)

�� 1
��1

(2)

Y = K� (3)

D =
Y � �kK

v(1��(1��d))
1�v + �d

(4)

We set �k = :022 to match the long-run ratio of investment to capital, and we set

� = :3 to match the long-run labor share. We then pick � so that the capital stock in

2 implies an interest rate (in a decentralized economy) of 1%. We then pick � so that

1 implies C
�dD

= 4. Given the steady-state solution, we then compute the dynamic

solution to the model by taking a second order perturbation around the steady-state

solution.45

To investigate the sensitivity of our conclusions to our parameter values and calibra-

tion targets, we have also resolved the model using a variety of di¤erent speci�cations.

We varied �d; choosing 12 values evenly spaced between .011 and .16, 7 values for �

45Additional details available on request.
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Figure 12: Robustness of RBC results
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evenly spaced between 0.5 and 3, three values for the C
�dD

(4, 5 and 6), and we also al-

lowed for a CES utility speci�cation with elasticities ranging from 0.7 to 1.7.46 Figure

12 shows the resulting standard deviations of durable and non-durable expenditures

relative to GDP. None of the parameter speci�cations (including allowing for CES be-

tween durable and non-durable consumption) is able to match the empirical volatility

of non-durable expenditures, and only a tiny substet of parameters delivers durable

expenditures that are not substantially more volatile than the data.

46This includes the range typically estimated in the literature. (See Krueger and Fernandez-
Villaverde [2010]). Expanding this range further did not matter for the general conclusions. For
high enough elasticity, we can match the volatility of non-durable expenditures relative to output, but
for these parameter values, durable expenditures are more than 40 times too volatile.
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8.2 Incomplete Markets Model

We describe the solution for the model with �xed costs. The solution for the model

without �xed costs is similar. Given the assumptions from the text, households solve

V (a�1; d�1; �;Z;K) = max
�
V adjust (a�1; d�1; �;Z;K) ; V

noadjust
�

with

V adjust (a�1; d�1; �;Z;K) = max
c;d;a

[cvd1�v]
1��

1� � + �E";�V (a; d; �
0;Z 0; K 0)

s:t:

c = wh� + (1 + r)a�1 + d�1 (1� �d)� d� a� f (1� �d) d�1
equilibrium conditions and prod. process

V noadjust (a�1; d�1; �;Z;K) = max
c;a;

d2((1��d)d�1;d�1)

[cvd1�v]
1��

1� � + �E";�V (a; d; �
0;Z 0; K 0)

s:t:

c = wh� + (1 + r)a�1 + d�1 (1� �d)� d� a
equilibrium conditions and prod. process

We begin by substituting the budget constraint into the utility function to eliminate

non-durable consumption as a choice-variable. We discretize � and Z using the algo-

rithm of Tauchen [1986] and approximate V adjust (:; :; �;Z; :) and V noadjust (:; :; �;Z; :) as

multilinear47 functions in the two continuous idiosyncratic states and one continuous

aggregate state. Initializing the grid for aggregate capital requires knowledge of the

steady-state level of capital, so before solving the model with aggregate shocks, we

solve for the steady-state of the model. The solution method is similar and simpler

than the solution with aggregate shocks, so we only describe the latter:

Given an initial guess for the value functions and transition function, we solve for

the optimal two-dimensional policy functions using a Nelder-Meade algorithm initial-

ized from 3 di¤erent starting values to reduce the problems of �nding local maxima

in the policy function. The values of adjusting and not adjusting are compared, to

generate the overall policy function and to update the overall value function. We

iterate until the separate value functions change by less48 than 0.001. Once the value

47We have experimented with cubic spline interpolation and have found that the speed advantages
of linear interpolation appear to be worth potential decreases in accuracy (especially since �xed costs
imply that the value functions may not be well approximated by cubic splines).
48Finer converge values didn�t appear to a¤ect the results.
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functions have converged, we then solve for the optimal policy function an additional

time on a �ner grid, to use for simulation.

We then simulate a panel of households and compute the evolution of the aggregate

capital stock to update the aggregate transition rule K 0 = 
0 (Z)+
1 (Z)K. We then

repeat the above procedure until the coe¢ cients in the value function change by less

than 1%. Once the transition rule has converged, aggregate forecasts are highly

accurate, with R2 > 0:999. We have experimented with including the aggregate

durable stock in the transition rule and found that it did little to improve forecasts, at

considerable additional computational cost.

For the benchmark results, we use 25 grid points each for interpolating a�1 and

d�1, 3 grid points for interpolating K, and we discretize aggregate and idiosyncratic

productivity using 5 and 7 points, respectively. (We recompute the model using 9

points for aggregate productivity when computing impulse response functions). We

construct a �ner grid with 90 points for a�1 and d�1 to compute the �nal policy function

used for simulation. Thus, our �ne policy function must be solved for approximately

2 million grid points and their associated expectations. Our simulation uses 25,000

households for 5,000 periods with an initial burnin of 1,000 periods.

In order to simulate the recession shock, we �rst feed Solow residuals computed

for the U.S. economy into the model and then hit the model with a simulated 4%

reduction in capital in the period corresponding to 2008q4. While our Krusell-Smith

approximation is highly accurate on average, it may be a poor approximation follow-

ing this one-time shock. We address this by comparing forecast errors following the

shock to forecast errors in general. Indeed we �nd that forecast errors are substan-

tially worse immediately following the one-time shock, but they nevertheless remain

highly accurate. Computing across various simulations, the maximum forecast error

following the one-time shock is 0.1% of the capital shock, which translates into less

than a 0.1% error in the forecast interest rate. This is substantially larger than the

maximum .01% forecast errors arising without the shock, but is still extremely small.

Exogenously raising and lowering the interest rate by 0.1% only has tiny e¤ects on

simulated outcomes, so we view these errors as economically inconsequential.
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9 Appendix 3: Estimating Durable Gaps

This appendix discusses the estimation of the empirical adjustment gaps and hazards

using PSID microdata. The procedure begins by �rst estimating the relationship

between variables in the structural model that have empirical counterparts and unob-

served quantities of desired durable holdings. In the benchmark results, we estimate

a linear regression of c; d�1; a; c
d�1
; a
d�1+a

on d�adjust and d
�
noadjust (where d

�
adjust is the

quantity of durables a household would choose today if its optimal policy is to pay the

�xed cost and d�noadjust is the optimal policy if it chooses to not pay the �xed cost). We

�nd that this speci�cation has R2 of over 0.99 so that these observables in the model

are su¢ cient to explain desired durable holdings.49

To estimate this procedure empirically, we must construct measures of these vari-

ables using PSID data. Beginning in 1999, the PSID contains detailed information on

non-durable consumption, the value of housing and vehicles as well as various wealth

holdings. Although more detailed non-durable consumption data is available begin-

ning in 2003, for comparability we use only variables that are available beginning in

1999. The value for non-durable expenditures is the sum of all components of food

consumption, utilities, transportation expenses, schooling expenses and health services.

Our measure of d�1 is the sum of last period�s housing value and vehicle values. Assets

are the sum of business value, stocks, IRAs, cash, bonds, minus the value of outstand-

ing debt. Missing values are pulled through between observations. After constructing

measures of c; d�1; a per household member (with household head < age 65), we then

de�ate these nominal values using NIPA price indices (we use state-level price indices

to adjust housing values), adjust for household age and remove a household level �xed

e¤ect.

This then gives us an empirical counterpart to c; d�1; a; c
d�1
; a
d�1+a

to which we

apply the same structural relationship estimated from our model to generate empirical

measures of d�adjust;estimate and d
�
noadjust;estimate: The empirical gap in Figure 10 is de�ned

as

log
�
d�adjust;estimate=d

�
noadjust;estimate

�
: Given estimates of the durable gap, we can then calculate the empirical adjustment

hazard as a function of the estimated durable gap. In our benchmark results, we

49Allowing for a more �exible functional form did not substantially enhance the predictive power.
Similar results are also obtained by directly estimating the durable gap.
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de�ne durable adjustment as a self-reported house or vehicle sale together with a 25%

change in the reported value of the durable stock. We use a combination of self-

reported adjustment and a minimum threshold for several reasons. 1) Combining

these indicators is likely to reduce spurious adjustments due to measurement error.

2) Some house sales are likely to be the results of idiosyncratic moves across location

which may not lead to any substantial adjustment in the size of the stock. 3) Finally,

and most importantly, self-reported adjustment indicators ask about adjustment over

the previous three years while the sample is conducted every two years. This implies

that the same adjustment may be counted twice. Requiring a simultaneous change in

value and self-reported adjustment reduces this concern. We chose a 25% threshold

because the median change in the reported durable stock conditional on self-reported

adjustment is 40% while the median change conditional on no adjustment is 13%, so

a 25% threshold roughly splits this distance. This adjustment de�nition generates an

overall two-year adjustment probability of roughly 30%.

In addition to the results shown in Figure 10, we have also estimated bootstrapped

con�dence intervals for the average density and hazard to assess the statistical signi�-

cance of the business cycle shifts that we estimate.

Figure 13: 90% Con�dence Intervals for PSID Estimates
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Figure 13 shows that the time-variation is statistically signi�cant.50

50With a bootstrap sample of 1000.
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While we believe our benchmark empirical speci�cation is reasonable, we also assess

the robustness of our results to alternative choices. The main empirical object of

interest is the slope of the empirical adjustment hazard as a function of the estimated

durable gap. A positive relationship between the absolute value of the durable gap and

the actual probability of adjustment is an indication that our estimated durable gap

has predictive power. Towards that end, Table 8 displays the results of a regression

of the probability of adjustment on the absolute value of the durable gap for a range

of empirical speci�cations.

adjusti;t = �+ �abs(log
�
d�adjust;estimate;i;t=d

�
noadjust;estimate;i;t

�
In all cases, we continue to �nd a signi�cant positive relationship between the durable

gap and the probability of adjustment. The empirical speci�cation is weakest when

using only self-reported adjustment and not requiring any minimum threshold for a

change in the size of the stock. For the reasons reported above, we believe this

speci�cation introduces substantial measurement error, but we nevertheless still �nd

that it contains signi�cant predictive power.

Table 8
Speci�cation � t-stat

Benchmark 0.26 18.1

Adjust Threshold of 0.1 instead of 0.25 0.19 12.4

Adjust Threshold of 0.4 instead of 0.25 0.29 21.4

Adjust Threshold of 0.01 instead of 0.25 0.06 4.7

No Adjust Threshold 0.04 2.9

Control for Year Fixed E¤ects in HH estimation 0.26 17.9

No adjustment for household size 0.28 19.9

Exclude business value from a 0.26 18.8

Restrict analysis to housing 0.09 8.7

Restrict analysis to vehicles 0.19 12.5

0.25 Threshold, Ignore self-reported adj 0.41 33.2

Do not pull-through missing obs 0.16 10.4

Don�t use de�ators to adjust values 0.24 16.8

Use d�noadjust;estimate;i;t = dt�1 0.28 19.34

Do not control for HH age 0.09 6.4
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In addition to PSID data, we have also performed our analysis using an alternative

data set. The Bank of Italy Survey and Household Income andWealth (SHIW) collects

detailed information on demographics, households�consumption and assets. Following

Bertola, Guiso, and Pistaferri [2005], we only use the waves after 1987 as the survey

methodology has remained roughly constant over this time period. In particular, we

use the 1989, 1991, 1993, 1995, 1998, 2000, 2002, 2004, 2006, and 2008 waves in our

analysis. Each wave surveys a representative sample of 8000 Italian households. We

focus our analysis on head of households. The value of non-durable consumption in the

data is de�ned as the sum of expenditure on apparel, schooling, entertainment, food,

medical expenses, housing repairs and additions and imputed rents. Our preferred

measure of the durable stock is the sum of end-of-period value of means of transport

(includes autos, motorcycles, caravans, boats and bicycles) and the value of real estate

(housing and land). Our results are robust to including other measures of durable

adjustment including the value of end-of-period stocks for furniture and jewelry. The

SHIW also includes information on durable �ows for means of transport, furniture, and

jewelry. Net assets are de�ned as the sum of all deposits, CDs, securities, businesses and

valuables minus the value of all liabilities to banks, corporations and other households.

Next, we impose the same structural relationship from on the model on this data

(as we did in the PSID) to generate empirical measures of the empirical durable gap.

Given estimates of these gap, we can then calculate the probability of adjustment as a

function of the durable gap. We de�ne durable adjustment as times when the household

either had non-zero expenditure in a period on means of transport or a 100% change

in the reported value of real estate. The results are qualitatively robust (the hazard

rate is increasing in the durable gap) to using di¤erent minimum thresholds including

the 25% threshold we used in our benchmark speci�cation in the PSID. The main

di¤erence is that a 25% threshold implies that the annual frequency of adjustment is

close to 35%, whereas a 100% threshold implies an annual frequency of adjustment

closer to 10%, which we view as a more empirically reasonable value.
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